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ABSTRACT

A blind adaptive beamformer with real-valued weights for

cyclostationary signals is proposed by introducing a prepro-

cessing stage. It is proved that the optimum weight vector

of the proposed method is real-valued. Thus we can dis-

card the imaginary part of the weight vector during the up-

date process, which reduces the computational complexity

of the algorithm. Moreover, since the optimum solution is

real-valued, a result closer to the optimum one is reached,

leading to a much increased convergence rate.

Keywords: Blind beamforming, cyclostationarity, real-

valued, self-coherent restoral (SCORE), linear array.

1. INTRODUCTION

Adaptive beamforming is a technique for receiving the sig-

nal of interest (SOI) from specific directions while suppress-

ing interference signals from other directions [1, 2]. The

minimum variance distortionless response (MVDR) beam-

former and reference signal based (RSB) beamformer are

two commonly used adaptive beamformers. For the MVDR

beamformer, the direction of the SOI is known or can be

estimated in advance and the beamformer weights are ob-

tained by minimizing the output power subject to some lin-

ear constraints; for the RSB beamformer, a reference signal

is available to the system and the beamformer weights can

be obtained by minimizing the mean-square error (MSE)

between the reference signal and the beamformer output [3].

For both cases, some prior information, either the direction

of arrival (DOA) of the SOI or a reference signal, is needed.

When this prior information is not available, we can rely

on some statistical properties of the SOI and employ the so-

called blind methods for beamforming, such as the constant

modulus based methods [4] and the cyclostationarity based

methods [5, 6, 7, 8, 9], leading to the class of blind beam-

formers [10, 11, 12, 13, 14, 15, 16, 17]. In this paper, we

focus our study on the cyclostationarity based blind adap-

tive beamformer. A cyclostationary signal has the statisti-

cal property of correlating with either a frequency-shifted

version of itself or its complex conjugate [18], which can

be used to extract the SOI and suppress the interference

without knowing the DOA of the desired signal. A class

of spectral self-coherent restoral (SCORE) algorithms was

developed for this class of signals [5], and a representa-

tive example is the least-square SCORE (LS-SCORE) al-

gorithm. To improve the convergence speed of the tradi-

tional LS-SCORE algorithm, the Cross-SCORE algorithm

was developed [5]. However, the Cross-SCORE algorithm

needs to solve the generalized eigenvalue problem, which

has a very high computational complexity and is difficult for

an online implementation. Recently, a subspace projection

approach was proposed [15], with a similar performance

as the Cross-SCORE algorithm. This approach requires an

eigendecomposition operation to the data covariance matrix

and an estimate of the number of signals, leading to a high

computational complexity too. Moreover, if the number of

signals is not estimated correctly, the performance of the

eigendecomposition-based method will degrade severely.

Most recently, with a preprocessing stage, an RSB beam-

former with real-valued coefficients was proposed based on

the uniform linear array (ULA) structure [19]. Its advan-

tage is twofold: 1) with real-valued coefficients, the com-

putational complexity of the overall system is reduced sig-

nificantly; 2) a faster convergence speed is achieved. In

this paper, we apply the idea to the cyclostationary based

blind beamformer and propose a novel structure using the

LS-SCORE algorithm. It can be proved that with this new

structure, the optimum solution for the LS-SCORE algo-

rithm will be real-valued. Therefore, in the update of the

algorithm, the imaginary part of the weight vector can be

discarded, leading to a solution closer to the optimum one.

As a result, the convergence speed of the algorithm is in-
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creased and its computational complexity reduced.

This paper is structured as follows. In Section II, a re-

view of the maximizing output SINR (signal-to-interference-

plus-noise ratio) beamformer and its real-valued optimum

solution based on a preprocessing transformation is pro-

vided. Our proposed LS-SCORE algorithm with real-valued

weight vector is given in Section III. Simulation results are

presented in Section IV and conclusions drawn in Section

V.

2. MAXIMIZING OUTPUT SINR BEAMFORMER

WITH REAL-VALUED COEFFICIENTS

Consider an M -antenna ULA with K far-field narrowband

signals impinging from the directions θ1, θ2, · · · , θK , re-

spectively. The received data vector at the nth snapshot can

be expressed as

x[n] = [x1[n], · · · , xM [n]]T =

K
∑

i=1

a(θi)si[n] + n[n] (1)

where xi[n] is the signal received by the ith antenna of the

array, si[n] is the ith source signal, n[n] is the noise with a

power σ2 and

a(θi) = [1, e−j2πd sin(θi)/λ, · · · , e−j2π(M−1)d sin(θi)/λ]T

(2)

is the M × 1 steering vector of the ith source, with d be-

ing the adjacent antenna spacing and λ denoting the signal

wavelength.

Assume that all impinging signals and noise are uncor-

related with each other. Then the data covariance matrix can

be expressed as

Rxx = E[x[n]xH [n]] =

K
∑

i=1

σ2
i a(θi)a

H(θi) + σ2I (3)

where E[·] denotes the expectation operation, [·]H repre-

sents the Hermitian transpose, σ2
i is the ith source power

and I is the identity matrix.

Without loss of generality, we assume that the first sig-

nal is the SOI. Then the optimum weight vector for maxi-

mizing the output SINR can be expressed as [1]

wSINR = ηR−1
xx a(θ1), (4)

where η is a scalar.

Based on the specific structure of ULA and the resul-

tant generalized conjugate symmetric property of the data

covariance matrix, a preprocessing transformation matrix

can be employed to transform the complex-valued optimum

weight vector to a real-valued one [19].

Suppose the response of the beamformer to the SOI s1
is g∗, which is complex-valued, i.e.,

aH(θ1)wSINR = [wHSINRa(θ1)]
H = (g∗)∗ = |g|ejψ (5)

where ψ is the angle of g.

For a ULA, its steering vector has the following struc-

ture [3]:

a(θ) = ejφJa∗(θ) (6)

where ∗ denotes the conjugate operation, J is the exchange

matrix defined as

J =







0 · · · 1
...

. . .
...

1 · · · 0






(7)

and φ = −(M − 1)2πd sin(θ)/λ. Because the covariance

matrix Rxx is Hermitian Toeplitz, we have Rxx = JR∗
xxJ.

As J = J−1, we then have [3, 19]

R−1
xx = (JR∗

xxJ)−1 = J(R−1
xx )

∗J. (8)

Using equations (6) and (8), it can be shown that the opti-

mum weight vector wSINR for maximizing the output SINR

has the following generalized conjugate symmetric struc-

ture (see [3] for details):

wSINR = ejφsJw∗
SINR (9)

where φs = 2ψ − φ.

We can then construct anM×M transformation matrix

T = [t0, t1, · · · , tM−1]
T where the vector ti satisfies the

following generalized conjugate symmetric property ti =
e−jφsJt∗i , (i = 0, · · · ,M − 1).

Define

w̄SINR = TwSINR. (10)

Substituting (9) into (10), and using the property that TJ =
e−jφsT∗, we have [19]:

w̄SINR = TwSINR = TejφsJw∗
SINR = w̄∗

SINR, (11)

i.e.,

w̄SINR ∈ ℜM (12)

Based on (11), a class of adaptive beamfomers with real-

valued weights is proposed [19], which has a low computa-

tional complexity and a fast convergence rate.

The transformation matrix T is not unique, and in this

paper it is adopted as [19, 20]

T =























e−jφs/2
√
2

[

I J

jJ −jI

]

if M is even

e−jφs/2
√
2





I 0 J

0
√
2 0

jJ 0 −jI



 if M is odd.

(13)

Note that T defined in this way is unitary, i.e., T−1 = TH .

3. PROPOSED METHOD BASED ON

CYCLOSTATIONARITY

In this section, we will first review the concept of cyclo-

stationarity and the LS-SCORE algorithm and then propose

our new structure with a real-valued weight vector.
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3.1. Cyclostationarity

When a signal is of second-order periodicity with a cycle

frequency α, its cyclic conjugate autocorrelation function

rss∗ = 〈s(t){s∗(t− τ)}∗e−j2παt〉∞ (14)

does not equal zero at frequency α for a delay τ , where 〈· 〉
denotes the average over the time interval [0 ∞] [15, 18].

Now we define the cyclic conjugate autocorrelation ma-

trix as

Rxx∗(α, τ) = 〈x(t){x∗(t− τ)}He−j2παt〉∞. (15)

Assume that the SOI has a cyclic frequency α1, and the

cyclic frequencies of the interferences and noise are differ-

ent from α1. Then the cyclic conjugate autocorrelation ma-

trix of the received array signal can be expressed as

Rxx∗(α1, τ) = rss∗(α1, τ)a(θ1)a
H(θ1). (16)

Define a reference signal z(t) as

z(t) = cHx∗(t− τ)ej2πα1t = cHu(t) (17)

where u(t) = x∗(t− τ)ej2πα1t and c is a control vector.

The LS-SCORE algorithm is obtained by minimizing

the difference between the reference signal z(t) and the beam-

former output y(t) = wHx(t), i.e.,

f(w, α1) = min
w

〈‖z(t)− wHx(t)‖2〉∞. (18)

The solution to the problem in (18) is given by [5]

wls = R−1
xx rxz(α1) (19)

where

rxz(α1) = Rxx∗c = rss∗(a
H(θ1)c)a(θ1). (20)

The optimum weight vector of the LS-SCORE algorithm

can also be expressed as [6, 15]

wls = µR−1
xx a(θ1) (21)

where µ = rss∗aH(θ1)c.

Using the stochastic gradient method with discrete time

n instead of continuous time t in (18), we can obtain the

following update equation for the weight vector w[n] with a

stepsize u1 [8]:

w[n+ 1] = w[n]− u1P[n] (22)

where P[n] = −(z[n] − wHx[n])∗x[n] is the gradient of

f(w, α1) with respect to w∗.

3.2. The Proposed LS-SCORE Algorithm

We can see that wls in (21) has the same form as wSINR in

(4). Therefore, the LS-SCORE beamformer also achieves

the maximum output SINR as the optimum beamformer given

in (4).

Similarly, we can prove that wls has the same general-

ized conjugate symmetric structure as given in (9)

wls = ejϕJw∗
ls. (23)

Proof : Substituting (6) and (8) into (21), and noticing

that JJ = I, we have

wls = µR−1
xx a(θ1)

= µJ(R−1
xx )

∗Je−jφJa∗(θ1)

=
µ

µ∗
e−jφJµ∗(R−1

xx )
∗JJa∗(θ1)

=
µ

µ∗
e−jφJw∗

ls. (24)

By defining

e−jϕ =
µ

µ∗
e−jφ, (25)

and substituting (25) into (24), we then obtain the result in

(23).

Then wls can be transformed into a real-valued form us-

ing the transformation matrix T defined in (13) with φs re-

placed by ϕ, i.e.,

w̄ls = Twls = w̄∗
ls. (26)

Since we do not know the phase of ϕ in T, we can not

use the transformation matrix T directly to form a blind

adaptive beamformer with real-valued weights as in the con-

stant modulus based blind beamformer case [16]. Follow-

ing the RSB structure proposed in [16], noting that here

we can consider z(t) as the reference signal in the RSB

beamformer, we can decompose T into two parts as follows

T = βT1 where β = e−jϕ/2 is an unknown parameter with

a unit magnitude and T1 = ejϕ/2T. Now T1 is independent

of ϕ.

 [n]

1T β[n] w[n]

[n]x

[n]x

 c +

−

u

−
_

[n]
e

Fig. 1: The proposed LS-SCORE blind beamformer

Define w̄ = T1w and x̄[n] = T1x[n] . The new structure

for the proposed LS-SCORE algorithm is shown in Fig. 1.

Now we can formulate the proposed LS-SCORE algo-

rithm as follows

J(w̄, β) = min
w̄

||(z[n]− w̄Hβx̄[n])||2. (27)
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By taking the gradient of (27) with respect to w̄∗ and β,

respectively, we have

dJ(w̄, β)

dw̄∗ = (x̄H [n]w̄ − βz∗[n])x̄[n], (28)

dJ(w̄, β)

dβ
= −w̄H x̄[n]z∗[n]. (29)

(28) is a function of β and (29) is a function of w̄. Now we

introduce an iterative method to solve this problem. We can

see that if β is known, then we can update w̄ in the negative

direction of the gradient of (28) using the stochastic gradient

method; once w̄ is updated, we then use the same approach

to update β. Then we obtain a set of update equations for

both β and w̄ as follows:

{

ŵ[n+ 1] = w̄[n]− u1(x̄
H [n]w̄[n]− β[n]z∗[n])x̄[n]

β̂[n+ 1] = β[n] + u2w̄H [n]x̄[n]z∗[n].
(30)

Since the optimum solution wls after this transforma-

tion is real-valued, we can discard the imaginary part of w

at each update, which is closer to the optimum one and gen-

erally gives a better output SINR result. Moreover, since β
is located on the unit circle, we also need to normalise β
after each update. As a result, we arrive at the following set

of update equations:















ŵ[n+ 1] = w̄[n]− u1(x̄
H [n]w̄[n]− β[n]z∗[n])x̄[n]

w̄[n+ 1] = 1
2 (ŵ[n+ 1] + ŵ

∗[n+ 1])

β̂[n+ 1] = β[n] + u2w̄H [n]xx̄[n]z∗[n]

β[n+ 1] = β̂[n+ 1]/|β̂[n+ 1]|.
(31)

3.3. Computational Complexity

The number of real multiplications of the traditional LS-

SCORE algorithm for each update is 8M+2 for an evenM .

However, the number of real multiplications of the proposed

LS-SCORE algorithm is only 4M + 19. So the computa-

tional complexity of the proposed LS-SCORE is only about

half of the traditional LS-SCORE algorithm for a large M .

For an odd M , one of elements of T is
√
2 and additional 2

real multiplications are needed for the proposed LS-SCORE

algorithm.

4. SIMULATIONS

Simulations are performed based on a 4-antenna ULA. The

SOI and two interferences impinge on the array from 0◦ ,

−40◦ and 50◦, respectively. Both the SOI and interferences

are binary phase-shift-keying (BPSK) signals with a raised-

cosine pulse shape and the roll-off factor is 1. The baud

rate for the SOI and interferences is 50MBd, 30MBd, and

20MBd, respectively. The SOI and interferences have the

same carrier frequency.The received signals are converted

to baseband and then sampled at a frequency of 250MHz.

The cycle frequency for the SOI is set to 50MHz. The an-

tenna spacing between adjacent antennas is half wavelength

at the carrier frequency. We assume that all signals have the

same power with a signal-to-noise ratio (SNR) of 10dB. The

control vector c is given by c = [1, 0, · · · , 0]T and the time

lag τ = 0 is chosen.

Two different values of the stepsize u1 are chosen, which

are 0.0001 and 0.00001, respectively, and the stepsize u2
for β is set to 0.1. Fig. 2 shows the output SINR result

with respect to the snapshot number. We can see that an im-

proved performance has been achieved in terms of both con-

vergence rate and output SINR for the proposed LS-SCORE

algorithm.
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Fig. 2: Output SINR versus the number of snapshots.

Now consider the evolution of the normalized weight

vector defined as ‖w − wopt‖2/‖wopt‖2. The result corre-

sponding to Fig. 2 is shown in Fig. 3, where the conver-

gence rate of the weight vector of the proposed LS-SCORE

algorithm is much faster than that of the traditional one.
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Fig. 3: Normalized weight vector error versus the number

of snapshots.
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5. CONCLUSION

A blind adaptive beamformer with real-valued weight vec-

tor for cyclostationary signals has been proposed by prepro-

cessing the received data. After this preprocessing stage, the

complex-valued optimum weight vector of the traditional

LS-SCORE algorithm is transformed into a real-valued one.

Therefore, we can ignore the imaginary part of the weight

vector in the update of the algorithm. As a result, the com-

putational complexity of the proposed LS-SCORE algorithm

is much less than that of the traditional one. Simulation re-

sults have shown that the proposed method outperforms the

traditional LS-SCORE algorithm in terms of both conver-

gence rate and output SINR.
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