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ABSTRACT
Affine projection algorithm encompasses a family of con-

figurable algorithms designed to improve the performance
of other adaptive algorithms, mainly LMS based ones, es-
pecially when input data is highly correlated. The computa-
tional cost of the affine projection algorithm depends largely
on the projection order, which in turn conditions the speed of
convergence, thus high speed of convergence implies usually
high computational cost. Some real-time applications (es-
pecially multichannel) using the affine projection algorithm
can not be implemented in the existing general-purpose hard-
ware, because of this several improvements of the affine pro-
jection algorithm have been proposed to make it more com-
putationally efficient and more versatile in terms of perfor-
mance. This paper outlines the evolution of the affine projec-
tion algorithm and its variants, in order to get an efficient and
self-reconfigurable algorithm. Furthermore new improve-
ments over the existing low cost and variable step size and
projection order versions are proposed to give examples of
the new generation of affine projection algorithms.

1. INTRODUCTION

Originally affine projection (AP) algorithms emerged to im-
prove speed of convergence of gradient based algorithms
when the input signals did not exhibit flat spectrum, since
the speed of convergence of these algorithms decreased sub-
stantially in this cases [1].

A common feature that encompasses all AP algorithms
is the filter update equation, which uses N (called projection
order) vectors of the input signal instead of a single vector
as the NLMS algorithm. Therefore, these algorithms could
be understood as an extension of the algorithm NLMS, or
more generally, as a minimization problem with constraints
that can be expressed mathematically as follows.

Let (1) be the change of the L adaptive filter coefficients
between successive algorithm iterations,

ΔwL[n] =wL[n]−wL[n−1]. (1)

To develop the algorithm the expression (2) has to be mini-
mized under N constraints given by (3):

‖ΔwL[n]‖2 = ΔwT
L [n]ΔwL[n], (2)
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wT
L [n]xL[n− k] = d[n− k] para k = 0,1, ...,N−1. (3)

xL[n] is a vector that comprises the last L samples of the
input vector and d[n] represent the desired signal as it is il-
lustrated in Fig. 1.
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Figure 1: Adaptive scheme and signals involved using the
affine projection algorithm.

The solution of the presented problem leads to the AP
update equation given by

wL[n] =wL[n−1]+AT [n](A[n]AT [n])−1eN [n], (4)

where

A[n] = (xL[n],xL[n−1], ...,xL[n−N +1])T , (5)

eN(n) is a vector of size N ×1 given by

eN [n] = dN [n]−A[n]wL[n−1], (6)

and dN [n] represents the desired signal vector of size N ×1

dT
N [n] = (d[n],d[n−1], ...,d[n−N +1]). (7)

Equation (4) can be expressed by a general form, see ex-
pression. (8), which includes the entire affine projection fam-
ily.

wL[n] =wL[n−1−α(N −1)]
+μAτ

T [n](Aτ [n]Aτ
T [n]+δI)−1eNτ [n]

(8)

with eNτ [n] = dNτ [n]−AτwL[n−1−α(N −1)],

Aτ [n] = (xL[n],xL[n− τ], ...,xL[n− (N −1)τ ])T (9)
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and

dT
Nτ [n] = (d[n],d[n− τ], ...,d[n− (N −1)τ]). (10)

As it can be observed in (8), the N data vectors that
are used to update the coefficients could not necessarily be
the most recent ones. Thus different versions of the al-
gorithms can be developed choosing the input data vectors
and using them in different ways within (8). As examples
we can cite: the NLMS with orthogonal correction factors
(NLMS-OCF) [2], the partial rank affine projection algo-
rithms (PRA) [3], and the most frequently used standard
affine projection algorithms (APA) [4], which is given when
δ = 0, α = 0 and τ = 1. The last one with δ �= 0 leads to the
affine projection algorithm with regularization (R-APA) [5],
whose coefficient update equation can be considered as a
special case of LevenbergMarquardt regularized APA (LMR-
APA)[6].

The different configurations of this family of algorithms
can fit the needs of convergence of different applications and
the nature of the signals involved. However, despite that
good performance can be obtained, two factors can be im-
proved: their computational cost, which can be unaffordable
for high projection orders, and the little configuration flexi-
bility of the algorithm. It seems clear that the algorithm could
improve its performance if it could efficiently adjust their pa-
rameters (μ , N, δ , α or τ) during execution.

2. LOW COST AFFINE PROJECTION
ALGORITHM

Two main procedures to reduce the computational cost of
the AP family algorithms have been proposed: either making
use of algebraic relations that allow calculate some parame-
ters using computational resources or using accurate approx-
imations to avoid costly calculations. The main strategies
that have reduced the computational cost by following these
guidelines are explained within the following sections.

2.1 Fast Affine Projection Algorithm
The fast affine projection algorithm [7, 8] (FAP) reduces the
cost of the AP algorithm by N, thus it is suitable for higher
projection orders. It makes use of algebraic and matrix re-
lations and assumes δ ≈ 0 to reduce the computational cost
of

εN [n] = (A[n]AT [n])−1eN [n], (11)

that can be simplified even more when μ = 1. The FAP
algorithm needs to calculate the forward and backward lin-
ear prediction filters and the minimum value of the sum of
prediction-error squares, whose values are recursively com-
puted. It must be noted that the main cost of the algorithm
is due to the calculation of the inverse matrix that appears
in (4) and (11). It is easy to realize that the main matrix
and its inverse can be recursively calculated thus reducing the
computational cost from N2L+O(N3) to 6(N2 +2N) multi-
plications [9, 10]. Furthermore the FAP algorithm optimizes
even more the cost making use of auxiliary coefficients in
the coefficient update equation, thus it does not use (4). The
additional cost reduction reaches (L−3)N+2 [11]. The rela-
tion between the auxiliary coefficients and the original ones
are given by the following expressions

ŵL[n] = ŵL[n−1]+μxL[n−N +1]EN−1[n−1] (12)

y[n] = ŵT
L [n]xL[n]+μxT

L [n]A
T
[n]E[n] (13)

where EN−1[n] and E[n] are the last element and the N −
1 last elements, respectively, of the auxiliary error vector,
which can be recursively calculated by

E[n] = εN [n]+
[

0

E[n−1]

]
. (14)

The performance of this algorithm is similar to the origi-
nal AP algorithm. They differ in the transient period when
δ is not small enough or non-accurate initial values of the
linear prediction filters or other recursively calculated pa-
rameters are chosen. Despite this algorithmic variant leads
to meaningful computational savings, its computational cost
and its steady state behavior depend on its initial configura-
tion, mainly its projection order. Therefore both aspects can
be improved by decreasing its projection order during algo-
rithm operation.

2.2 Gauss Seidel pseudo Affine Projection Algorithm
The pseudo affine projection (PAP) algorithms are derived
using realistic approximations of the original sample-by-
sample AP algorithm. The first version, proposed in [12]
computes the weight update equations assuming μ = 1 and
the stationarity of the input signal. It derives the relation be-
tween the optimal forward linear prediction coefficient error,
[1,a1, . . .aN−1]

T and the energy of the prediction error. It is
shown in [12] that

A[n]AT [n]

⎛
⎜⎜⎝

1
a1

...
aN−1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

xT
L [n]u[n]

0
...
0

⎞
⎟⎟⎠ (15)

where u[n] = xL[n]+
N−1

∑
i=1

aixL[n−1]. The coefficient update

equation is the following:

wL[n] =wL[n−1]+
μ

uT [n]xL[n]+δ
u[n]e[n], (16)

where e[n] = d[n]−xT
L [n]wL[n− 1]. The Gauss-Seidel PAP

algorithm (GSPAP) [13] proposes to use the one Gauss Sei-
del iteration to solve (1) and use the previous forward linear
prediction coefficient error solution as an initialization for the
current iteration. The computational load is optimized by the
following approximation

u[n]≈ (sT [n]xN [n]/s0[n],u[n−1]), (17)

where s[n] = (s0[n],s1[n], . . . ,sN−1[n])T is the solution of the

system (R[n]+ δIN)s[n] = b with b = (1,0 . . .0)T , R[n] =
A[n]AT [n], xN [n] = (x[n],x[n−1], . . . ,x[n−N +1])T , u[n−
1] denotes the vector consisting of the uppermost L− 1 el-
ements of u[n− 1] and IN is the N ×N unity matrix. An-
other variant of PAP algorithm has been derived in [14] in-
spired from the adaptive algorithms with decorrelating prop-
erties investigated in [15]. The coefficient update is slightly
changed as follows:

wL[n] =wL[n−1]+
μ

uT [n]u[n]+δ
u[n]e[n]. (18)
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If a similar approximation of u[n] with a tapped-delay line
as in (17) and one Gauss-Seidel iteration is performed, the
GS-PAP algorithm introduced in [16] is obtained. Further
adaptations of the PAP algorithms were investigated for ac-
tive noise control in [17] and hearing aids in [18]. Unlike the
FAP algorithm the PAP algorithms updates the weight coef-
ficients, not the auxiliary ones. Their numerical complexity
can be further reduced by the block exact based versions (e.g.
[19]-[21]). Also, variable regularization [22] and variable
step size version were investigated in [23] and [24].

2.3 Dichotomous Coordinate Descent Affine Projection
Algorithm
The DCD algorithm was proposed in [25] in order to itera-
tively solve linear systems using only additions and bit-shift
operations. The original DCD algorithm updates a solution
of a linear system of equations in directions of Euclidian co-
ordinates in the cyclic order and with a step size that takes
one of (number of bits) predefined values corresponding to
a binary representation bounded by an interval [−H,H] [25].
The algorithm starts the iterative search from the most signif-
icant bits of the solution and continues until the least signifi-
cant bits were updated. The algorithm complexity is limited
by Nu, the maximum number of “successful” iterations. A
more efficient DCD version was proposed in [26]. This new
version finds a ’leading’ (pth) element of the solution to be
updated. More details about the DCD algorithms version can
be found in [25] and [26]. The DCD algorithms are typi-
cally used to solve implicit linear systems of equations, and
therefore to avoid complicated matrix inversions. Important
complexity reductions were reported for various DCD based
AP, FAP or PAP algorithms (see for example [27]-[30]).

3. VARIABLE STEP SIZE AFFINE PROJECTION
ALGORITHMS

The step size μ commands the convergence speed and
strongly influences the steady state performance of the AP
algorithm. As μ increases the convergence is faster but the
Mean Squared Error (MSE) in steady state worsens [31].
Variable step size algorithms allow to adjust the step size to
the algorithm needs within both transient or steady states.

The theoretical MSE for the AP algorithm can be approx-
imated by [31, 32]

MSE ≈ μNσ2
v

2−μ
+σ2

v (19)

where σ2
v represents the measurement noise variance.

From (19) the MSE can be approximated when μ ≈ 0 [31]
by

MSE ≈ μσ 2
v

2−μ
+σ2

v (20)

that coincides with the MSE of the NLMS algorithm.
In summary, only the AP algorithms with low step size

exhibit optimal behavior in steady state. However low values
of μ slow down their convergence speed. It exists several
algorithms to dynamically adjust the step size [33]-[36], all
of them improve the MSE at steady state and do not worsen
the convergence speed, but their computational cost is similar
to the original AP.

4. VARIABLE ORDER AFFINE PROJECTION
ALGORITHMS

The variable order affine projection algorithms adjust its pro-
jection order to their convergence needs and therefore de-
crease their computational cost. Furthermore they reach a
good MSE at steady state as it can be expected from (19).
These algorithms decrease the projection order when they
reach the steady state or lower convergence speed is allowed.
A first version of these algorithms was proposed in [37]
where the number of input data vectors to update the filter co-
efficients are selected within each algorithm iteration. Other
examples of this kind of algorithms are given in [32] and
[38, 39]. All these strategies guarantee a good behavior at
both steady and transient states, but mainly they try to op-
timize the computational cost when the algorithm does not
need to work with high projection orders.

5. AFFINE PROJECTION ALGORITHMS WITH
VARIABLE BOTH PROJECTION ORDER AND STEP

SIZE

Variable step size algorithms exhibit good steady state per-
formance and the algorithms that adjust their projection or-
ders reduce the computational cost when the convergence
speed can be decreased. As it can be observed by (19)
and (20), the AP algorithm with N = 1 and low step size
would exhibit the lower cost and better steady state. On the
other hand high projection order and step size values im-
prove the convergence properties of the algorithm. Thus al-
gorithms that suitably adapt both parameters would eventu-
ally improve algorithm performance in almost any issue. An
example of this kind of algorithm was proposed in [40].

In this work we propose an alternative algorithm that dy-
namically and simultaneously adjusts N and μ . We have used
some of the AP variants named within sections 3 and 4. We
start from the variable step size AP algorithm (VSSAP) pro-
posed in [33]. The step size follows an update rule that max-
imizes the change of the coefficients between iterations as

μ[n] = μmax
‖p[n]‖2

‖p[n]‖2 +C
, (21)

where p[n] represents an estimation of the mean value of
εN [n], which was defined in (11), and it is recursively ob-
tained from p[n] = αp[n−1]+ (1−α)ε[n], with 0 < α < 1

and C ≈ N
SNR , where SNR is the signal to noise ratio

σ2
x

σ2
v

, and

σ2
x is the variance of x[n].

Following the rules given above the algorithm would
reach the steady state for a given projection order N, then
it would be convenient to decrease the projection order to get
lower cost and better MSE. In order to know when the algo-
rithm should change its projection order we propose to use
the condition presented in [39], where it is stated that an AP
algorithm of order N has reached its steady state when

γ =
R
N

≤ 0.32, (22)

being R the number of elements of vector eN [n] =
(e1[n],e2[n] · · ·eN[n])T in (6) that fulfils

e2
i [n]≥

μ [n]Nσ2
v

2−μ [n]
+σ2

v . (23)
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When the projection order decreases it is advisable to adjust
the step size as well, in order to get a meaningful convergence
speed. The new step size should fulfill [32]

μ[n] =
2μ [n−1]N[n−1]

μ[n−1](N[n−1]−N[n])+2N[n]
. (24)

Since the new projection order in time n is N − 1 (it decre-
ments a unit) when (22) is fulfilled, the proposed algorithm
would carry out the step size readjustment following

μ =
2μN

μ +2N −2
. (25)

Thus the algorithm would change to the following projection
order until N = 1, at this stage it would work as the variable
step size NLMS.

The performance of the proposed algorithm compared
with: AP (N = 10), the evolving AP [38] (as an exam-
ple of variable order projection AP algorithm) and the VS-
SAP [33] (as an example of variable step size), is illustrated
in Fig. 2. It shows the learning curves for an identification
FIR system (20 taps), averaging 3000 tries and considering
σ2

v = 0.001 and a colored Gaussian noise generated by filter-
ing white Gaussian noise (of zero mean and unit variance)
with a first order autoregressive filter of transfer function√

1−0.92/(1− 0.9z−1), as reference signal. The MSE of
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Figure 2: Comparative performance of different AP algo-
rithm. Learning curves for an identification FIR system.

the proposed algorithm is the lowest and the transient is as
good as the other algorithms. Moreover, the computational
cost decreases with n because the projection order becomes
smaller as well. The number of multiplications per iteration
for each algorithm is illustrated in Fig. 3. The total num-
ber of multiplications accumulated within the whole simula-
tion (3000 iterations) for each algorithm is summarized as:

AP N=10 VSSAP Evolving AP Proposed AP
55200000 55510000 2111290 1249394

6. CONCLUSIONS

This work has revised the main existing alternatives that al-
low the AP algorithm to become more computationally ef-
ficient and versatile. These alternatives also improve the
convergence properties of the algorithm and its behavior at
steady state. The proposed algorithms work suitably even
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Figure 3: Number of multiplications of the different AP al-
gorithm shown in Fig. 2.

when there is an uncorrelated near-speech sound. To better
illustrate the work, a novel version of the AP algorithm that
updates both the step size and the projection order has been
proposed and compared with other existing versions. This al-
gorithm is based on the VSSAP and it carries out a sequential
decrement of the projection order when the algorithm reaches
its steady state. Then it also readjusts its step size.

These strategies can also be applied to the low cost AP
algorithms and thus optimize even more its required compu-
tational resources.
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