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ABSTRACT

We reconsider the discrete form of the one dimensional phase
retrieval problem from the point of view of magnitude in-
put data. It has been previously mentioned that input mag-
nitude of DFT should satisfy certain conditions in order to
provide the correct solution. These requirements ask for the
corresponding trigonometric polynomial to be positive defi-
nite. Alternatively, an arbitrary set of DFT magnitude may
not provide a correct solution. In this paper we study whether
this may be a reason for iterative methods to stagnate. We
present a sequence of steps in order to obtain a correct solu-
tion to the one dimensional phase retrieval problem. Experi-
mental results are also provided.

Index Terms— Signal reconstruction, Discrete Fourier
Transform, phase retrieval.

1. INTRODUCTION

Signal reconstruction from Fourier transform magnitude has
been called phase retrieval [1]. The term comes from the fact
that the Fourier phase is not known and the signal should be
reconstructed. Although certain constraints may be added
according to application, the main one dimensional discrete
phase retrieval (1-D DPhR) problem can be stated as follows:

Let x(n) be a discrete signal of length N and let X(k) be
its N -point Discrete Fourier Transform (DFT). Given knowl-
edge that x(n) has M -point support, and given the values of
the DFT magnitudes |X(k)|, k = 0, 1, . . . , N − 1, determine
x(n) or equivalently X(k) [2].

In order to find the solution of 1-D DPhR problem, the
most common approaches are iterative transform algorithms
[3], which alternate between time and frequency domains.
This type of algorithms can implement very easily time-
domain constraints like compactness of the support. It has
been observed that these algorithms fail to converge to a solu-
tion as they usually stagnate [4]. Another way to find a solu-
tion to 1-D DPhR problem is finding the zeros of z-transform
of autocorrelation. This may provide the minimum-phase so-
lution, however this method behaves poorly numerically and
can be recommended only for rather short length [5]. Alterna-
tive for solving the 1-D DPhR problem are Hilbert transform

[6], computation of cepstral coefficients [7] or solving linear
systems of equations [2].

Previously we have considered 1-D DPhR problem from
the point of view of magnitude input data [8]. We have
claimed that magnitude input data, which actually are the
modulus of DFT |X(k)|, should satisfy certain requirements
in order to provide a correct solution. To this end the Fejér-
Riesz Theorem guarantees us that 1-D DPhR problem has
always a solution if the corresponding 1-D DPhR trigono-
metric polynomial is positive definite. However, an arbitrary
set of magnitudes does not provide always a positive defi-
nite trigonometric polynomial, consequently the 1-D DPhR
problem may not have a correct solution.

The goal of this paper is to analyze whether the previ-
ous requirements may be one of the reasons for 1-D DPhR
iterative methods to stagnate. Another target is to present a
sequence of steps in order to obtain a correct solution to the
1-D DPhR problem.

The paper is organized as follows. First we mention some
support requirements of 1-D DPhR problem (Section 2). A
short description of the iterative algorithms for solving the 1-
D DPhR problem is presented in Section 3. The Fejér-Riesz
Theorem and its consequences are recalled in Section 4. Steps
for a correct solution of 1-D DPhR problem are specified in
Section 5. Experimental results are discussed in Section 6.
Finally conclusions are also delivered.

2. SUPPORT REQUIREMENTS

The 1-D DPhR problem deals with sequences having finite
length. Let us consider the signal x(n) having M -point sup-
port. Since its autocorrelation r(n) has the support [−(M −
1),M − 1], sampling of the Fourier transform squared mag-
nitude at ωk = 2πk

N with

N ≥ 2M − 1, (1)

will be sufficient to extract autocorrelation from circular au-
tocorrelation r̃(n), without time-domain aliasing.

If the support of x(n) does not satisfy (1), the 1-D DPhR
problem is an ill-posed problem. Indeed, the set of squares of
the DFT magnitudes is the DFT of the circular autocorrelation
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r̃(n) of x(n). If x(n) hasM -point support, its autocorrelation
r(n) has 2M − 1 length. If (1) is not satisfied, then r̃(n)
will be corrupted because of time-aliasing, and r(n) cannot
be recovered from r̃(n).

We can also assume that N is odd.
Indeed, there is large class of applications where the DFT

magnitudes are measured by sampling the magnitude of the
Fourier transform of an analog real value signal. In such case
we use to have an even symmetry of the magnitude. If zero
frequency is also measured, it follows that we have an odd
number of DFT magnitudes.

Moreover, suppose that N is even. Then the DFT for k =
N/2 corresponds actually to ω = π. We can consider that the
component corresponding to ω = π is divided in two equal
half components for ω = π and ω = −π. Consequently what
we get actually is an odd number of DFT samples.

For these reasons, in Section 4, we shall consider that
N = 2M − 1, otherwise the sequence x(n) will be zero-
padded correspondingly.

3. THE ITERATIVE ALGORITHM FOR 1-D DPHR
PROBLEM

The iterative transform algorithm or 1-D DPhR problem
is a standard iterative technique in which the estimate of
x(n) is improved in each iteration [9]. The N -point dis-
crete Fourier transform (DFT) of x(n) will be denoted as
X(k) = |X(k)|ej∠X(k) [10]. The iterative technique to
reconstruct the sequence x(n) from the N samples of its
magnitude |X(k)|, k = 0, 1, . . . , N − 1 is described as
follows.

1. We begin with ∠X̃1(k), an initial guess of the unknown
DFT phase and form the first estimate, X1(k), of X(k)
using the specified magnitude function, i.e.

X1(k) = |X(k)|ej∠X̃1(k).

Computing the inverse DFT of X1(k) provides the first
estimate, x1(n), of x(n). Since an N -point DFT is
used, x1(n) is an N -point sequence which is, in gen-
eral, nonzero for M ≤ n ≤ N − 1.

2. From x1(n), another sequence x̃2(n) is defined by

x̃2(n) =

{
x1(n), 0 ≤ n ≤M − 1,

0, M ≤ n ≤ N − 1.

3. The phase ∠X̃2(k) of theN -point DFT of x̃2(n) is then
considered as a new estimate of ∠X(k)| and a new es-
timate of X(k) is formed by

X2(k) = |X(k)|ej∠X̃2(k).

From this, a new estimate x2(n) is obtained from the
inverse DFT of X2(k).

Repetitive application of Steps 2 and 3 defines the standard
iterative algorithm.

In this iterative procedure, an error function that is non
increasing (proof can be found in [10]) is the mean-square
difference between the known magnitude and the estimate on
each iteration, i.e.,

Ep =
1
N

N−1∑
k=0

∣∣∣|X(k)| − |X̃p(k)|
∣∣∣2 .

Since Ep is non increasing and has a lower bound of zero, it
must converge to a limit point, which may be zero or a posi-
tive nonzero number.

4. POSITIVE TRIGONOMETRIC POLYNOMIALS
AND 1-D DPHR PROBLEM

For the beginning we shall recall a result on trigonometric
polynomials, then we shall relate it to 1-D DPhR problem.

Theorem 1 (Fejér and Riesz) If

Y (z) =
M∑

n=−M
y(n)z−n and Y (ejω) ≥ 0,

then there is

X(z) =
M∑
n=0

x(n)z−n

such that
Y (ejω) = |X(ejω)|2.

Going back to 1-D DPhR problem, let us remind that the
Fourier transform magnitude is the Fourier transform of the
autocorrelation:

S(ω) ≡ |X(ejω)|2 = F{r(n)}. (2)

On the other hand, for a M -point support sequence x(n), the
sequence and its circular autocorrelation r̃(n) can be written
via (2M − 1)-point DFT as follows :

X(k) =
M−1∑
k=0

x(n)e−j
2πkn
2M−1 ,

|X(k)|2 =
2M−1∑
k=0

r̃(n)e−j
2πkn
2M−1 .

(3)

Let r̂(n) be defined by folding r̃(n):

r̂(n) =


r̃(0), n = 0
r̃(n), n = 1, 2, . . . ,M − 1
r̃(n+ 2M − 1), n = −1,−2, . . . ,−(M − 1)
0, otherwise.

(4)
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If time aliasing has been avoided, then r̂(n) = r(n), and we
have

|X(k)|2 =
M−1∑

k=−(M−1)

r(n)e−j
2πkn
2M−1 . (5)

In view of (2), (3) and (5), the problem of finding x(n)
from r(n) is actually whether the trigonometric polynomial
Ŝ(ω) = F{r̂(n)} is a nonnegative trigonometric polynomial.
In such case the Fejér-Riesz Theorem guarantees us that the
1-D DPhR problem has always a correct solution.

Example 1

Let N = 5 and

|X(k)| =

{
2, k = 0;

1 k = 1, 2, 3, 4.
(6)

Then

r̃(n) = DFT−1{|X(k)|2} =

{
1.6, n = 0;

0.6 n = 1, 2, 3, 4.

Taking into account the periodicity and the symmetry proper-
ties, we have

r̂(n) =

{
1.6, n = 0;

0.6 n = ±1,±2.

Its Fourier transform

Ŝ(ω) = F{r̂(n)} = 1.6 + 1.2 cosω + 1.2 cos 2ω =
= 2.4 cos2 ω + 1.2 cosω + 0.4.

Since 1.22 − 4 · 2.4 · 0.4 = −2.4 < 0, then Ŝ(ω) > 0 for all
ω and the 1-D DPhR problem has a correct solution. Indeed,

Ŝ(ω) = |1.0736 + 0.3675e−jω + 0.5589e−j2ω|2

and

x(n) =


1.0736 n = 0;
0.3675 n = 1;
0.5589 n = 2;
0 otherwise

is a solution of 1-D DPhR problem when the input DFT mag-
nitude data are given by (6).

Alternatively, not any selection of magnitude can provide
a positive definite trigonometric polynomial [8].

Example 2

Let again N = 5 and

|X(k)| =

{
3, k = 0;

1 k = 1, 2, 3, 4.

Then

r̃(n) = DFT−1{|X(k)|2} =

{
2.6, n = 0;

1.6 n = 1, 2, 3, 4.

Taking into account the periodicity and the symmetry proper-
ties, we have

r̂(n) =

{
2.6, n = 0;

1.6 n = ±1,±2.

Its Fourier transform

Ŝ(ω) = F{r̂(n)} = 2.6 + 3.2 cosω + 3.2 cos 2ω

is not always positive as Ŝ(π/2) < 0. Since Ŝ(ω) is not
positive definite, it may be not written as a square of modulus
of a trigonometric polynomial. In such situation an attempt to
solve correctly 1-D DPhR problem may be unsuccessful.

5. TOWARDS A CORRECT SOLUTION TO 1-D
DPHR PROBLEM

For our purposes it is important to find the conditions for a
certain set of magnitude input data to provide a correct solu-
tion to 1-D DPhR problem. One way is to compute r̃(n) using
inverse DFT of |X(k)|2, then to fold it in order to get r̂(n).
Finally we have to verify whether Ŝ(ω) is positive for all ω.

To this end we can consider Ŝ(z) ≡ Z{r̂(n)} and we
have to verify whether Ŝ(z) is positive for all z with |z| = 1.
To test the unit circle positivity of polynomials is possible and
a procedure is known for decades [11].

To proceed we recall some properties of the polynomials
which are nonnegative on the unit circle [5]:

1. Positive polynomials on unit circle are either symmetric
or complex Hermitian or a positive constant;

2. Positive polynomials on unit circle contain two types of
zeros [5]:

• zeros that are not on the unit circle, but come in
pairs;

• zeros that are on the unit circle and have even mul-
tiplicity.

Taking into account all above mentioned results, to obtain
a correct solution to 1-D DPhR problem we may proceed as
follows:

1. Evaluate the circular autocorrelation

r̃(n) = DFT−1
N {|X(k)|}

2. Evaluate the folded circular autocorrelation r̂(n) using
(4);
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Fig. 1. The variation of Ep for Example 1.

3. Evaluate S(z) = Z{r̂(n)};

4. Verify whether all zeros on unit circle of S(z) have
even multiplicity;

(a) If YES, we can proceed with any method for solv-
ing 1-D DPhR problem;

(b) If NOT, the 1-D DPhR problem may not have a
correct solution.

When 4(a) is true, then the zeros must occur in conjugate
pairs. From every pair, one can select a zero to form a solution
of 1-D DPhR problem. This procedure is called the direct
method or by finding the zeros of z-transform.

6. EXPERIMENTAL RESULTS

First we have implemented the same algorithm for a set of
DFT input magnitude data which provides a positive trigono-
metric polynomial (Example 1). We run the iterative phase-
retrieval procedure and we computed the mean-square differ-
ence. The variation of Ep is shown in Figure 1. It can be seen
that the error function is fast converging towards zero and fi-
nally we get the solution of 1-D DPhR problem mentioned in
Example 1.

Then we have implemented the iterative phase-retrieval
algorithm for the input DFT magnitudes given in Example 2
and we have proceeded as before. The mean-square differ-
ence between the known magnitude and the estimate on each
iteration decreases and finally stagnates (Figure 2). In this
situation we cannot obtain a correct solution of 1-D DPhR
problem.

We can speculate that such situation happens whenever
the input DFT magnitudes do not provide a positive trigono-
metric polynomial. However, one can find a set of DFT mag-
nitudes which does not provide a positive trigonometric poly-
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Fig. 2. The variation of Ep for Example 2.

nomial and for which the iterative phase-retrieval algorithm
converges in a similar manner as in the case shown in Fig-
ure 2. Indeed, in such case the iterative phase retrieval al-
gorithms finds a correct solution to 1-D DPhR problem, but
only the DFT samples |X(k)| are correct; the overall Fourier
transform, since Ŝ(ω) 6= S(ω) ≥ 0.

Moreover, one can find also set of DFT magnitudes which
does provide a positive trigonometric polynomial and for
which the iterative phase-retrieval algorithm converges in a
similar manner as in the case shown in Figure 1, i.e. Ep
stagnates. It follows that even the Fejér-Riesz Theorem guar-
antees us that the 1-D DPhR problem has always a correct
solution, it is not guaranteed that the solution can be found
using the iterative phase-retrieval algorithm.

We just note that such examples are not seldom. We have
generated uniform random DFT input data and we have ver-
ified whether they provide a positive definite trigonometric
polynomial. At the same time we have verified whether the
iterative phase-retrieval algorithm converges or stagnates.

A first set of outcomes are graphically presented in Fig-
ure 3. The length of DFT magnitude input data was 5 and we
have considered 1000 random input different data. The en-
ergy of autocorrelation sequences has been normalized. We
have computed the convergence level (CL) in dB of Ep after
105 iterations and the minimum of Ŝ(ω) and we get:

• 715 DFT data with CL < −250 and Ŝ(ω) ≥ 0;

• 32 DFT data with CL < −250 and Ŝ(ω) < 0;

• 168 DFT data with CL > −100 and Ŝ(ω) ≥ 0;

• 85 DFT data with CL > −100 and Ŝ(ω) < 0.

A second set of outcomes are shown in Figure 3. The
length of DFT magnitude input data was 15 and we have only
two large sets:
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Fig. 3. Convergence level (CL) in dB of Ep after 105 itera-
tions and the minimum of Ŝ(ω) for 1000 random DFT input
magnitude data of 5 length.

• 380 DFT data with CL < −250 and Ŝ(ω) ≥ 0;

• 620 DFT data with CL > −100 and Ŝ(ω) ≥ 0;

7. CONCLUSIONS

In this paper we have analyzed whether the positivity require-
ments of the corresponding trigonometric polynomial may be
one of the reasons for 1-D DPhR iterative methods to stag-
nate.

We can conclude that even the Fejér-Riesz Theorem guar-
antees us that the 1-D DPhR problem has always a correct
solution, it is not guaranteed that the solution can be found
using the iterative phase-retrieval algorithm. Thus the itera-
tive procedure may stagnate even for cases when the direct
method provides correct solution to the 1-D DPhR problem.
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