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ABSTRACT

Least squares (LS) methods are frequently used in many statistical
problems, including the solution of overdetermined linear systems.
We analyze the effect of using the LS solution in the decoding of
quantized discrete Fourier transform (DFT) codes. We show how
the LS solution can improve detection, localization, and calculation
of errors in the real field, and come close to the quantization error
level under the mean squared error (MSE) fidelity criterion. Assum-
ing perfect localization, the LS estimation substantially decreases
the MSE between the transmitted and reconstructed sequences, re-
gardless of the magnitude of channel error to quantization noise ra-
tio. Furthermore, when quantization noise is comparable to or larger
than channel errors, where error localization is usually very poor, the
LS solution still brings down the estimation error, resulting a recon-
struction error at the level of quantization error.

1. INTRODUCTION

The problem of error correction in the real field using real-number
discrete Fourier transform (DFT) codes was first introduced by Mar-
shall [1]. Marshall also introduced an important subclass of DFT
codes, the Bose-Chaudhuri-Hocquenghem (BCH) DFT codes. Apart
from being used for error and erasure correction in the real field
[2-4], BCH-DFT codes have also found applications in image trans-
formation [5, 6] and distributed source coding [7].

In the absence of quantization noise it is straightforward to de-
tect, localize, and correct the errors introduced by the channel; the
problem becomes more challenging considering quantization error.
This problem has been investigated in [2—6]. The objective of this
paper is to improve the Peterson-Gorenstein-Zierler (PGZ) decod-
ing algorithm to reconstruct the input signal with small MSE, for
quantized DFT codes. The improvement is based on the observation
that in the PGZ algorithm we encounter overdetermined systems in
different steps of error decoding, i.e., detection, localization, and cal-
culation of errors. While neglecting quantization error these systems
are consistent, they are not so when quantization is introduced. In
current situation, there is no exact solution; we look for the solution
with the smallest 2-norm error vector, that is the least squares (LS)
solution.

Our work is more general than the work in [2, 3]; we do error
localization without assuming the knowledge of the number of er-
rors [2] or fixing the magnitude of errors [3]. It also differs from [4]

This work was supported by Hydro-Québec, the Natural Sciences and
Engineering Research Council of Canada and McGill University in the
framework of the NSERC/Hydro-Québec/McGill Industrial Research Chair
in Interactive Information Infrastructure for the Power Grid.

© EURASIP, 2012 - ISSN 2076-1465

x e RN\ ——X e C¥|[ zero-
\ Fr padding

Fig. 1. The typical real BCH-DFT encoding scheme.

which only focuses on determining the number of errors. More im-
portantly, we do not restrict our study to low level quantization error
which is the case in the previous works. Lastly, we perform error cor-
rection and demonstrate the efficiency of the proposed algorithms, in
the MSE sense. Owing to the LS estimation, if error localization is
perfect, DFT codes result in a MSE lower than quantization error,
even when several errors occur during transmission. This is one of
the main advantages of real-number error correcting codes over bi-
nary codes that motivates further study in this field.

The rest of this paper is organized as follows. In Section 2, we
briefly explain the construction of BCH-DFT codes. In Section 3,
we review the decoding of DFT codes without and with quantiza-
tion. Then in Section 4, we introduce LS decoding in quantized DFT
code. We evaluate the proposed algorithm by performing simulation
in Section 6. Section 7 concludes the paper.

2. REAL BCH-DFT CODES

Figure 1 represents the typical encoding scheme for an (N, K) real
BCH-DFT code. The generator matrix of this code is given by

G = ./%WISIEWK, M

in which W and W3 respectively are the DFT and IDFT matrices
of size K and V, and X is an N x K matrix [2-6].

The code generated by (1), as illustrated in Fig. 1, is a real BCH
code provided that 3 inserts N — K successive zeros in X while
keeping the conjugacy constraint [8]. Particularly, for odd K, 3 has
exactly K nonzero elements givenas Xgp = 1,%;; = XN—i,Kk—i =
l,i=1: % [3]. The parity-check matrix H is then comprised of
the columns of the IDFT matrix W& corresponding to those N — K
zeros. Because of the unitary property of the IDFT matrix, H G=0.
Throughout this paper, an (N, K) DFT code refers to a code gener-
ated by (1) using the zero-padding matrix 3 as specified above; thus,
it is a BCH code in the real field. Also, K is assumed to be an odd
number while N can be any integer greater than K. We also assume

v < tis the number of errors where t = | ¥ gK | represents the
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maximum number of errors that can be corrected by the employed
DFT code.

3. DECODING ALGORITHM FOR BCH-DFT CODES

3.1. Neglecting quantization

We consider the extension of the binary PGZ algorithm to the real
field [8], [9]. Consider an (N, K) DFT code with parity-check ma-
trix H and generating matrix G as described in Section 2. Let y
denote the transmitted codevector over some noisy channel. The
received vector is a corrupted version of y by noise vector e. The
syndrome samples of the received vector » = y-e can be expressed
as

s=Hr=H(y+e)=He, (2)

and s is a complex vector of length N — K. s # 0 indicates that
one or more errors have occurred, thus we need to correct them. The
decoding algorithm of a DFT code, and a BCH code in general, has
the following major steps:

e Detection (to find the number of errors)
e Localization (to determine the location of errors)
e Calculation (to calculate the magnitude of errors)

These steps are elaborated in the following.

3.1.1. Error detection

This can be done by forming the syndrome matrix

S1 S2 . St
S2 S3 e St+1

S = ; 3)
St St+1 S2t—1

and evaluating its rank. The entries of this matrix are picked from
the syndrome vector s = [s1, 2, ..., s2:]7, which is calculated by
(2). Now, if S, is nonsingular for 4 = v < ¢ but it is singular for
© = v + 1, then v indicates the number of channel errors [9].

3.1.2. Error localization

The error locator polynomial A(z) for a BCH code is a polynomial
whose roots are the reciprocals of error locators, which are of our
interest. The coefficients of A(z), are found by solving the following
set of equations

sjAy +sjp1hp—1 + o+ Sjpu—1A1 = =554, 4

forj = 1,...,2t — v, v < t. This set of consistent equations can
be written as the following matrix equation [9]

S,, [A,,,...,Al]T:—[SU+1,...,SQU]T. (5)
To find the error locations, we evaluate A(a’) fori = 1,2,..., N,
where v = eﬂ%r for the DFT codes. Let i1,42,...,%, be those

indices for which A(a’) = 0. Thus, the location of errors is known
and the error polynomial can be defined once the magnitude of errors
is determined.

3.1.3. Error calculation

The last step, i.e., to compute the magnitude of errors, is rather
simple. Let H. denote the matrix consisting of the columns of
H corresponding to error indices, then the errors magnitude £ =

[Er, Eo,. .., E,,]T = [€iy, €igyev-s eiV]T can be determined by
solving

H. E =s,, (6)
where s, = [s1,52,...,5,]" contains v arbitrary syndrome sam-

ples, and H. , includes those rows of H. corresponding to s,.. This
completes the error correction algorithm by determining the error
vector. Note that, with this algorithm, we obtain the exact value of
channel errors as long as the number of these errors is not greater
than the error correction capability of the code. Admittedly, we can-
not expect such an exact result considering quantization error, since
quantization error is random and the decoding becomes an estima-
tion problem.

3.2. Quantized DFT codes

The transmission of continuous-valued signals in digital communi-
cation systems is subject to quantization; therefore, it is necessary
to modify the decoding algorithm to take into account the error in-
troduced by quantization. Let ¢y be the quantized version of the
codevector y, and g denote the associated quantization error, i.e.,
Y = y + q. The received vector, which is affected by channel noise
as well as quantization error, is given by » = y + g + e. As aresult,
the syndrome samples will be distorted and

S§=Hr=H(q+e)=8q+ S, @)

where s, = Hgq, and sc = He. Note that, contrary to the case in
Section 3.1, s = 0 does not imply an error-free channel. However,
we can use this distorted syndrome to perform decoding, particularly
if quantization noise is much smaller than channel errors [2], [4].
The new syndrome matrix S’t, is the same as S except that its entries
are distorted syndrome samples given in (7). Obviously, the rank
of S, is not necessarily equal to the number of errors, since it is
unlikely to get a singular matrix. It is thus common to set a threshold,
either a theoretical [4] or an empirical [5], to determine the rank of
S:. This is usually accomplished by doing eigendecomposition and
estimating the number of nonzero eigenvalues.

The rest of decoding, i.e., error localization and calculation, is
similar to what we discussed in Section 3.1, except that syndrome
samples are replaced by distorted syndrome samples in (4)-(6). With
resulting distorted error locating polynomial, it is difficult to reliably
localize errors, unless quantization noise is much smaller than chan-
nel errors. The last step in the decoding algorithm is also affected by
quantization and the problem of computing the magnitude of errors
becomes also an estimation problem, as syndrome samples are ran-
dom. Then, using (6), even a perfect localization does not guarantee
a fairly good reconstructed signal, in terms of the MSE.

4. LS DECODING FOR QUANTIZED DFT CODES

To alleviate the effect of quantization noise, we propose to use the
least squares (LS) solution to estimate the number of errors. It can
also be used in the estimation coefficients of the error locating poly-
nomial and magnitude of errors [3]. This is based on the observation
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that every decoding step in Section 3 is using only a limited number
of available syndrome samples. More precisely, neglecting quantiza-
tion error, only v syndrome samples are enough to exactly determine
the magnitude of v errors in (6), and 2v samples are used in detection
and localization of v errors. There is no benefit in using more sam-
ples. Nevertheless, in quantized codes, one can utilize the remaining
2t — v and 2t — 2v samples to respectively improve the estimation
of errors magnitude as well as the number and location of errors.

4.1. Error detection and localization

Consider the error locating polynomial in (4) for quantized DFT
codes, i.e., with distorted syndrome. To have a better visualization,
we rewrite it in the following matrix form

S1 So Sy

e
So 53 . §l,+1 Al/ §V+2
: : R Av—r :
5, Sut1 ) | - S | ®
: A
L Sot—v  S2t—v+1 Sot—1 | | So
Lyt

Now, it is easy to see that for v < ¢ the system is overdetermined,
i.e., there are more equations than unknowns. Precisely speaking,
there are 2t — v > v equations with v unknowns. Thus, the esti-
mation of A = [A,, Ap_1,... ,Al]T becomes more accurate if we
find the LS solution. The accuracy of the LS estimation depends on

—~ Thus, it

increases as the number of errors decreases.

The question that remains is how to determine the number of
errors. In other words, with this arrangement, can we also estimate
v more accurately than what we did in Section 3.2? The answer is
positive and the new arrangement of syndrome samples in matrix
Iil,,t in (8) also gives rise to an improved estimation of the number
of errors in the presence of quantization error. Similar to what we
discussed in Section 3.2, to find the number of errors we begin with
evaluating the rank of L, ,¢» which is essentially the square matrix
S., ie., Lyy = S,. The rank of S; is not necessarily equal to
the number of errors, and we need to set a threshold to determine
its rank [2]. Then, similar to what we did in Section 3.2, we can
determine if L, ,¢ is a full rank matrix or not. But unlike that, if this
matrix is singular, we evaluate the singularity of Lt 1,¢, rather than
S’t_l = Lt 1,t—1, in the next step. In general, if LM ¢ is nonsingular
for 4 = v < t but it is singular for 1 = v + 1, then v indicates the
number of channel errors. Observe that for u = v + 1 < t, L, ; is
a tall matrix which makes use of 2¢ — 1 syndrome samples while the
square matrix S’u includes only part of them (2p — 1); thus, a better
estimation is attainable in the first case.

To show the improvement, we analyze the cases where v = 0
and v = 1. First assume v = 0, i.e., there is no error. In the existing
approach, v is evaluated based on S 1 = 81, 1.e., the decision is based
on one sample only. That is, for a threshold 7y, if |det(S:)| =
|51] < 71 the decoder declares no errors; otherwise, it assumes that
at least one error has occurred. In the proposed approach, however,
the decision is based on 2t — 1 samples. More precisely, the decision

criterion is

2t—1 v

1y = <
57 Cis(Li L) BT

This results in a more accurate estimation v as it is averaging quan-
tization error effect over 2t — 1 samples.! Similarly, to check if
one error has occurred, we use IN/Q,t rather than S’z. Let Q~’2 de-
note the square submatrix of I~127t including rows ¢ and 2 + 1, 7 =
1,...,2t — 2. It can be shown that eig( QL) = eig(S4Ss),
where Q% denotes Q?, in the absence of quantization error. We use
this fact to improve the estimation of v by

2t—3 v>2
> 2
2t — Z det(QL Q}) z % (10)
Note that det(X') = ] eig(X ). When there are two or more errors,

still using more syndrome samples must improve the estimation, yet
eig(QL7 Q%) = cig(S5 S2) is no longer valid.

4.2. Error calculation

Although a reliable localization is necessary for proper decoding,
with conventional estimation method, presented in Section 3.2, even
perfect error localization does not imply a small estimation error.
We show that the LS solution can largely overcome this problem
and reduce the MSE between reconstructed and original sequences.
The gain comes from the exploitation of more syndrome samples by

H.E =3, 11

which engages all 2¢ syndrome samples to estimate v < t errors.
The accuracy of estimation depend on the number of equations per
input sample, which is a function of code rate (X = & — 1).
The lower the code-rate, the more accurate the error estimation.

5. PERFORMANCE ANALYSIS

In order to be able to analyze and compare the performance of quan-
tized DFT codes, we need to model quantization noise stochastically.
We use the quantization model proposed in [10] assuming that noise
components are uncorrelated and each noise component g; is uni-
formly distributed on [—A /2, A/2]. Therefore, for any i, j we have

E{¢;} =0, E{qiq;} = 036i;, (12)

where 02 = A?/12. We assume the quantizer range covers the

dynamic range of all codevectors of the DFT code.

The codevectors in a DFT code are generated by y = G'a where
G is defined in (1). Since G is not a square matrix, one possibility
to linearly reconstruct  form y is to use the pseudoinverse of G,
which is defined by Gt = (GTG)"*G7T [10]. It is easy to check
that G'G = I, hence G'(Gz) = . Since GTG = LIk, the
pseudoinverse G is further simplified and the linear reconstruction
can be written as

z=Gly=(G"G)'GTy = %GTy. (13)

IFor more precision, we can also use 52; and make the decision based on
2t samples.
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Let g denote the quantization error that satisfies the conditions in
(12). Suppose we want to estimate « from g = Gx + q. From (13)
we obtain

K4 K _p
:c—NG y—ac+NG q, (14)

thus reconstruction error due to quantization is % G g and the mean
square reconstruction error is MSEq = o7 [10,11]. Since K <
N, this proves that DFT codes decrease quantization error when
there is no channel error.

‘We show that this is correct even if channel errors exist. To see
this, let e denote channel errors; the received vector is then affected
both by quantization and channel errors, that is, § = G + 1) where
1 = g + e. Assuming that quantization and channel errors are
independent, we have

e e oK e
MSE, o = LE(IE - 2"} = ~E(| A GTnl?)
K K
K K
= W]E{WTU} = WE{QT'J +q'ete’gre’e}

K v
¥ 7+ o]

(15)
where the second line follows from E[z” Az] = trjc2 AA”] for a
zero mean @ with i.i.d. samples, the third line results from G*' G =
X Ik, v is the number of errors, and E{e” e} £ vo7. Note that
E{e”q} = E{q" e} = 0 based on the assumptions.

From (15), it is evident that reconstruction error has two distinct
parts, one due to quantization error and another one due to channel
errors. It also proves that DFT codes decrease both channel errors
and quantization errors by a factor of % Moreover, we also con-
clude that the MSE is monotonically increasing with the number of
errors as well as their power. It is also worth noting that, even with-
out correcting errors, just with linear reconstruction the MSE using
DFT codes can be smaller than quantization error. More precisely,
MSEq+e < o7 for

~ N2t (16)

2
06<EN7K_ ’
Kv

o2 " K v

without error correction but merely using linear reconstruction.
Then, while 02 < %02, a reconstruction error better than quanti-
zation error is guaranteed if the number of errors is within the error
correction capability of code (v < t). Eventually, in the extreme
case, when all samples in a codevector are corrupted by channel
errors (v = N), reconstruction error is less than quantization error
as long as
2 1 2
o; < (E —1)oy. a7
This simply proves the superiority of DFT (real-number) to binary
channel coding, when the distribution of channel errors is such that
(17) holds. Simulation result, provided in the next section, confirms
these properties. We should highlight that (15)—(17) are calculated
assuming that no error correction is done.
Considering error correction, the MSE mainly depends on the
accuracy of estimation at localizing the errors and finding their mag-
nitude. The former improves when the number of errors is small

compared to ¢, whereas the latter depends on the code-rate and sub-
stantially improves for low-rate codes. With the largest number of
errors (v = t), for a code with R < 0.4, the LS estimation always
result in a MSE smaller than quantization error, provided that we
know the location of errors. This will be discussed in the following
section.

6. NUMERICAL RESULTS

To evaluate the performance of the LS decoding, simulations are car-
ried out for transmitting a Gauss-Markov source with zero mean, unit
variance, and correlation coefficient 0.9, over an impulsive channel
for a range of channel-error-to-quantization-noise-ratio (CEQNR).
The generated sequences are encoded using a DFT code. The code-
vectors are then quantized with 6 bits precision, and transmitted over
a noisy channel that randomly inserts v < ¢ errors, generated by a
Gaussian distribution. For each setting, we evaluate the effect of LS
estimation assuming perfect or imperfect localization of errors, and
compare the MSE of received and decoded codevectors with respect
to the input signal.

6.1. Perfect localization

To evaluate the effect of the LS solution in the estimation of errors,
here we assume that the location of errors are perfectly known to the
decoder. We first consider a (17,9) DFT code. Figure 2 shows that
the MSE between transmitted and linearly reconstructed signals can
be less than quantization error for several error patterns, when the
LS estimation is employed. It compares the LS estimation with the
conventional error estimation as well as the case where no decod-
ing is done, which corresponds to (15). Clearly, the LS estimation
outperforms the existing method. The LS estimation substantially
decreases the estimation error even when code length goes up. Par-
ticularly, for low-rate codes, the MSE is better than quantization for
any error pattern. Figure 3 represents this notion for a (36,9) DFT
code. This indicates that, in real-number codes, the MSE can go
under quantization error level even if there are many errors.

6.2. Considering localization error

When error localization is not perfect, the LS estimation still per-
forms much better than the existing approach, as shown in Fig. 4.
This improvement, however, is not the same for different CEQNRs
since error localization depends on CEQNR. It is noticeably high at
low CEQNRs but gradually comes down as CEQNR increases. This
loss is due to the fact that as CEQNRs becomes larger even one lo-
calization error can lead to a poor estimation and severely increase
the MSE. Fascinatingly, at low CEQNRs, even with very poor lo-
calization, the LS estimation gives an acceptable MSE. In this range
of CEQNR it is very challenging to reliably localize errors, as it is
hard to distinguish between channel and quantization errors. Previ-
ous works have ignored this region either by limiting their study to
the case where channel errors are larger than quantization error [4] or
by excluding the results for this range [2]. Considering conventional
localization approaches, either coding theoretic or subspace-based
approaches, in such a range of CEQNR, not decoding would be bet-
ter than decoding if we use the existing estimation method. The
LS estimation, however, overcomes this deficiency. For example,
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Fig. 2. The relative merit of the LS estimation and existing approach
with perfect error localization for different error patterns in a (17, 9)
DFT code.
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Fig. 3. The MSE performance of a (36, 9) DFT code (¢ = 13) with
perfect error localization.

ina (17,9) DFT code, when CEQNR is lower than 10dB, LS esti-
mation result in reasonably close performance when compared with
not decoding. This becomes more important noting that without the
LS estimation, even perfect error localization cannot guarantee rela-
tively low MSE, as shown in Fig. 2.

7. CONCLUSION

We have adopted the LS algorithm to all three steps of the PGZ de-
coding algorithm for quantized BCH-DFT codes. This algorithm
noticeably improves the MSE between transmitted and reconstructed
signals and shows how DFT codes, particularly low-rate codes, can
perform even better than quantization error, in the MSE sense. This
is achieved when the number of errors is much less than the capacity
of the code or when perfect localization is assumed. In light of this
advance, error localization becomes more important as successful lo-
calization guarantees DFT codes to perform better than binary codes,
whose MSE performance is limited to quantization error in the best
case. Another important observation is that at low CENQRs, even
with poor localization, a reconstruction error close to quantization
error is achievable using the LS estimation.
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