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ABSTRACT

Signal compression aims to decrease transmission rate (in-
crease storage capacity) by reducing the amount of data nec-
essary to be transmitted. The discrete linear chirp transform
(DLCT) is a joint frequency instantaneous-frequency trans-
form that decomposes the signal in terms of linear chirps. The
DLCT can be used to transform signals that are not sparse
in either time or frequency, such as linear chirps, into sparse
signals. In this paper, we propose a new algorithm for sig-
nal compression based on the direct and the dual DLCT, de-
pending on the sparsity of the signal in either time or in fre-
quency. Furthermore, we develop a data structure for the ex-
tracted coefficients of compressed signals. In the data struc-
ture, the extracted parameters are arranged in certain way
that are predetermined for the compress and decompress pro-
cesses. The ability of the proposed method in signal com-
pression are demonstrated using test as well as actual signals.
The results are compared with those obtained with compres-
sive sensing (CS) method.

Index Terms— discrete linear chirp transform, signal
compression, compressive sensing, sparsity, duality

1. INTRODUCTION

The growth of communication systems and information tech-
nology, and their ability to serve voice, image, and video,
requires more data to be transmitted or stored. Signal com-
pression transforms a signal into an efficient compact form,
for transmission or storage, that can be decompressed back
to produce a close approximation of the original signal. The
goal of signal compression is to minimize data rate to con-
serve bandwidth, while keeping the quality and intelligibility
of the original signal. Unfortunately, the compression ratio
is inversely proportional to the quality of the signal. Hence,
there is always a tradeoff between compression ratio and qual-
ity [1, 2].

Compressive sensing (CS) [3] aims to take advantage of
the signal’s sparser representation dictated by the uncertainty
principle. For instance, in [4] the signal to be compressed
is represent in the sparser domain, using the discrete cosine
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transform (DCT). Taking random measurements from the
new sparse signal so that the length of the measurement is
smaller than the length of the original signal, the original
signal can be reconstructed from the measurements using
{1-optimization. Although CS provides very good results for
signals that are sparse in either time or frequency, it does not
for signals that are not significantly sparse in either time or
frequency domains such as the case of chirp signals [5],[6].
Time-frequency analysis is needed to obtain an intermedi-
ate domain where the signal is sparser than in time or in
frequency. The Fractional Fourier Transform [8, 9] or the
polynomial time-frequency transforms [10] can be used, here
we propose a joint frequency instantaneous-frequency and
its dual joint time and instantaneous-frequency transform to
obtain a sparse representation of a signal that is not sparse in
time or frequency, or sparse in either of these domains.

In [7], the discrete linear chirp transform (DLCT) is in-
troduced to provide a linear-chirp representation of signals.
The DCLT is a joint frequency and instantaneous frequency
transform. It is applicable in the analysis of non-stationary
signals, it can be implemented with the fast Fourier trans-
form, and it provides a dual transform jointly relating time
and instantaneous-frequency. A clear application for the
DLCT is compression of signals that are sparse in time or
in frequency, or in neither time nor frequency. The DLCT
parameters characterizing the signal would permit us to gen-
erate a compressed form useful for transmission or storage.
This paper will provide the necessary information about the
DLCT and illustrate its application to compression. Test
signals will be used to compare our procedure with CS.

The rest of the paper is organized as follows. In section
2 we discuss the DLCT transform, so that in section 3 and
4 we are able to propose and demonstrate its application to
data compression. Although our procedure is illustrated with
test signals that are not necessarily sparse in either time or
frequency, it is applicable to signals that are sparse in time or
in frequency.
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2. THE DISCRETE LINEAR CHIRP TRANSFORM
(DLCT)

Sparseness or compressibility is fundamental in the transmis-
sion and storage of signals. Sparseness can be obtained, in
some cases, using the uncertainty principle. For instance, a
sinusoid of infinite time support is sparse in frequency, while
an impulse is sparse in time but not in frequency. As proposed
in [4], for a given signal one can select either the time or the
frequency domain for which the signal is sparser, by forcing
the sparseness through thresholding the transform of the sig-
nal. Using a random measurement matrix, the reconstruction
of sparse signals is converted into a convex optimization. De-
termining the sparseness of signals requires considering joint
time-frequency transformations.

A chirp signal would be an example of a signal that is not
sparse in time or in frequency, although it could be consid-
ered sparse in an intermediate domain. This points toward the
application of the Fractional Fourier transform (FrFT) [8, 9]
or of the polynomial time-frequency transforms [10]. What
seems to be needed is a transformation that represents any
signal in terms of chirps, having modulation and duality prop-
erties. Such a representation would determine if the signal
is sparse, and if not how to transform it into an equivalent
sparse signal. In [7] a local signal representation in terms of
linear chirps is proposed. The modulation and duality prop-
erties of this transform permit us to change the given signal
into a sparser domain, and to consider the sinusoidal and the
impulse representations as special cases.

Given a discrete-time signal z(n), 0 < n < N — 1, its
discrete linear chirp transform (DLCT) is given as [7]

N-1

X(k,B) = Z x(n) exp (_ji\?fT(BnQ + kn))
n=0
0<nk<N-1, —A<B<A. )

The DLCT is obtained from a basis of linear chirps

B5.0(n) = exp (j?\f(w + k:n))

characterized by a chirp rate 3, a continuous variable con-
nected with the instantaneous frequency of the chirp:

TF(n, k) = 25 (26n + k).

and by the discrete frequency 27k /N. Assuming a finite sup-
port for 3, i.e., —A < B < A, it is possible to construct an
orthonormal basis {¢ 3 1 (n)} with respect to k in the supports
of B and n. To obtain a discrete transformation, we approxi-
mate the chirp rate as

2A
B~ LC, where C = I so that

h

L
<r<=
D)

— — 1 integer.
B) g

The inverse discrete linear chirp transform is proposed in
[7] as

X (k, 2
sy = 3 3 B e (555 k) )
t=—L/2 k=0
0<n,k<N-1, —A<B<A. 2)

The DLCT is a joint instantaneous-frequency frequency
transform that generalizes the discrete Fourier transform
(DFT) as X (k, 0) is the DFT of z(n).

A dual transformation is obtained by interchanging the
time and frequency variables in (1) and 2 :

N—-1
i0,8) = X Xk exp (357 (582 + b))
k=0

L2 N1 2, B) 2
~ . s 7777 2
X(k)y= > ZTN exp< iy (Bk +nk))
¢=—L/2 n=0
0<nmk<N-1, —A<B<A. 3)

It can be shown that X (k) is the DFT of 2(n) or X (k,0).
Thus, the DLCT can be used to represent signals that are com-
binations of sinusoids or chirps of small chirp rates, while the
dual DLCT is more appropriate for signals that are combina-
tions of impulses or chirps of large chirp rates.

It is important to remark that in a discrete chirp, obtained
by sampling a continuous chirp satisfying the Nyquist criteria,
the chirp rate 5 cannot be an integer. Indeed, if a finite support
continuous chirp

AQ

T 9AL

is sampled using Q; = 27/Ts = MQpae, M > 2, the dis-
crete signal is

z(t) = e (at*+901) 0<t<T

2(t)|ien, = eI(@TI I+ [0 TeIn)

— (B twon)

z(n) =

0<n<T/Ts=N-1

where we let B = an be the chirp rate and wy = QyTs be
the discrete frequency. Then the modulated chirp

x(n)e Iwom = 17" where

o AQ QT /M w/M
—aT2 = |2 |72 = =228 =
p=al; [2At] . 2N N
therefore, R
Ng 1
/8 = e—_—= —
27 2M

is not an integer for M > 2. The discrete chirp-Fourier trans-
form proposed in [12], assumes the chirp rate 5 is an integer
— indicating that if the discrete chirp is obtained by sam-
pling a continuous chirp it is aliased. For not aliased chirps,
we need | 5] < 0.25.
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For each value of 3 it can be shown that

N-1

e = 3 LD o (j?@(ﬁn? + kn>)

k=0

equals x(n) so that the inverse DLCT is the average over all
values of 3.

3. SIGNAL COMPRESSION USING THE DLCT

The main goal of signal compression is to reduce the amount
of data that we want to transmit or store. The direct and the
dual DLCT are used to represent signals that can be better
represented by one of them locally. Considering that a sinu-
soid has a chirp rate 5 = 0, while an impulse has as chirp
rate § — 0o, we separate signals into two groups: one having
0 < |B] < 0.5, corresponding to a linear chirp with a slope
with an angle in [—45° 45°], and the other for 0.5 < |3] < o0
corresponding to a linear chirp with a slope with an angle in
[45°, 90°] or [-45°, —90°]. The value of 8 = 0.5 is not arbi-
trarily chosen since it relates to the slope of the instantaneous
frequency such that

Slope = tan(f) = 28

If 8 = 0.5, then § = /4 which is the angle that separates the
time-frequency space into two symmetric halves.

The performance of the proposed algorithm is measured
by signal to noise ratio (SNR) and the compression ratio (Cr),

o2
SNR = 10log <;)
g

€

length of original signal

- length of compressed signal

where o2 is the mean square of the original signal and o2 is
the mean square of the error signal or the difference between
the original and the reconstructed signals. Another factor that
plays an important role in compression is a threshold. After
calculating the DLCT of a signal, many of the coefficients of
the resulted signal are close to or equal to zero. Thus, we can
modify those coefficients to produce more zeros by zeroing
out them using certain threshold.

3.1. The proposed compression algorithm

In this section, we present a new algorithm for signal com-
pression using DLCT. Figure 1 shows the block diagram of
the proposed method.

Consider the local representation of a signal z(n), 0 <
n < N — 1, as a superposition of P linear chirps

P—1

2
> a; exp (j]\?;(ﬂmz + kin) + j%)

1=0
= z{g,<0.5}(n) + 2{5,>0.51 (n)

z(n)

where {a;, i, ki, B;} are the amplitude, phase, frequency,
and chirp rate of the it linear chirp. The algorithm has two
paths for the signal, the upper which is the dual path and the
lower which is the direct path. Depending on the minimum
value of the extracted (s for certain segment of the signal, we
can do the compression either by the dual path or by the direct
path. The coefficients {a;, ;, k;, (;} are extracted and from
theses coefficients we can reconstruct an approximation for
the signal z(n)— where the arrangement of these coefficients
is done according to the proposed data structure as will be
shown in Fig. 2.

Dual of
DLCT

to transmit
or store

compress

Fig. 1. Compression algorithm.

3.2. The Developed Data Structure

The proposed data structure for sending or storing the ex-
tracted parameters is shown in Fig. 2, we choose P chirp
rates that correspond to the peaks of chirps which forms the
signal and P is the order of the chirp model. Then, from each
vector which corresponds to the chosen chirp rates from the
chirp transform X (k, 3) or &(n, ) matrix, we select M; am-
plitudes, phases, and frequencies or samples that have more

power of the signal concentrated upon them. .
Amplitude

# of frequencies at
each chirp rate

# of samples at
each chirp rate

Amp  PMp Ny

O[OV

Fig. 2. Data structure.

Time

4. SIMULATION RESULTS

In this section, we present three experiment to illustrate the
performance of the proposed method, compare the results
with the compressive sensing method, and explore the rela-
tion between the chirp rate and the proposed algorithm.
Compressive sensing (CS) is a compression technique that
uses a fixed set of linear measurements providing that the sig-
nal is sparse. The signal can be reconstructed by a convex
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optimization process. Consider the real and finite length sig-
nal x[n] represented by its coefficient vector x € RY. Let us
assume that the basis ¢ = [t¢)1...1)5] where ¢ is an N x N
matrix, the signal can be expressed in terms of the basis as [3]

N

X:Zsizpi or x=1s

i=1

where s is a vector of size N x 1. The basis can be any
function that transforms x into a sparse signal. For instance,
we can use sinusoidal basis such as discrete cosine transform.
The signal s is a sparse signal in the new space and has K
nonzero coefficients. Assume that the K nonzero coefficients
are not extracted directly, but we project the vector s onto a
matrix ¢ of size M x N where M < N. The matrix ¢ is called
the measurement matrix and it satisfies the condition that the
columns of the sparsity basis ¥ cannot sparsely represent the
rows of the measurement matrix ¢. The measurements y can
be obtained as follows

y=0¢x=9¢¢s=>0s

where y is a vector of size M x 1. The reconstruction of the
signal can be done via ¢;-optimization

§ = argmin ||s|; subjectto y =0s
as shown in [4].

In the first experiment, we use a segment of speech (1024
samples, sampling rate f; = 8kHz) as shown in Fig. 3(a).
Figure 3(b) and (c) give the magnitude of the DLCT and the
Wigner distribution for this segment of speech. The compres-
sion ratio versus the SNR plot is shown in Fig. 3 (d). Since
our goal is to obtain high SNR with high compression ratio,
the proposed method gives more compression ratio than com-
pressive sensing method, for an acceptable SNR. This seg-
ment of speech has very small chirp rates at high frequency
components, with low concentrated energy, and sinusoids at
low frequency components with high concentrated energy.
Since the minimum value S is less than 0.5, the compres-
sion is obtained by the direct path. Even though, this segment
of speech can be considered a sparse signal in the frequency
domain, the proposed algorithm outperforms the compressive
sensing method.

In the second experiment, a bird song signal (2048 sam-
ples and sampling rate f, = 7,350Hz) with § = 0.88 is
considered; see Fig. 4 (a). This signal is sparser in the time
domain than in the frequency domain. Its dual DLCT and its
Wigner distribution are shown in Figs. 4(b) and (c). Figure
4(d) displays SNR versus compression ratio. In this experi-
ment, the minimum value of S is greater than 0.5. Thus, the
dual path is used for the compression. The proposed method
performs better than CS method.

In the third experiment, we consider the case of a bird
signal (number of samples= 2048 and f; = 7,350H z) with

Spe
s
s

(a) (b)

SNR (dB)

() (d)

Fig. 3. Experiment 1: (a) Segment of speech; (b) | X (k, 8)|
in two-dimensions; (c) The Wigner distribution of the signal
showing time and frequency marginals; (d) Compression ratio
vs SNR for different methods.

B = 0.08 and 5 = 0.88. Figures 5 (a), (b), and (c) show
the signal, the magnitude of the DLCT, and the Wigner dis-
tribution of the signal. Since, this signal is a chirp based, the
improvement of compression ratio for certain SNR is very
large and it clearly shows the effectiveness of the proposed
method over compressing sensing method as shown in Fig. 5
(d). The minimum value in this experiment is 5 = 0.08, so
the compression is obtained by the direct path.

5. CONCLUSIONS

In this paper, we present a new algorithm for signal compres-
sion based on the discrete linear-chirp transform (DLCT) and
its dual. The extracted coefficients can be arranged in the de-
veloped data structure. The simulation results show the effec-
tiveness of the proposed method over the compressive sensing
(CS) method. The improvement in the compression ratio de-
pends on the nature of the signal. The effect of chirp rate
on the performance of the direct and dual paths is also in-
vestigated. It turns out the compression ratio depends on the
minimum chirp rate of the linear chirps that forms the signal.
The value of 5 = 0.5 is the decision maker. If 3, < 0.5
we use direct path, otherwise dual path is used.
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Fig. 4. Experiment 2: (a) Bird chirping; (b) | X (k, )] in two-
dimensions; (c) The Wigner distribution of the signal showing
time and frequency marginals; (d) Compression ratio vs SNR
for different methods.
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