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3 National Health Service Blood and Transplant, The University of Oxford, Oxford, UK. david.roberts@ndcls.ox.ac.uk

ABSTRACT

In this paper, a new paradigm of clustering is proposed, which

is based on a new Binarization of Consensus Partition Matrix

(Bi-CoPaM) technique. This method exploits the results of

multiple clustering experiments over the same dataset to gen-

erate one fuzzy consensus partition. The proposed tunable

techniques to binarize this partition reflect the biological real-

ity in that it allows some genes to be assigned to multiple clus-

ters and others not to be assigned at all. The proposed method

has the ability to show the relative tightness of the clusters,

to generate tight cluster or wide overlapping clusters, and to

extract the special genes which bear the profiles of multiple

clusters simultaneously. A synthetic periodic gene dataset is

analysed by this method and the numerical results show that

the method has been successful in showing different horizons

in gene clustering.

Index Terms— Ensemble clustering, Consensus func-

tion, Fuzzy partition, Binarization of Consensus Partition

Matrix (Bi-CoPaM).

1. INTRODUCTION

Data clustering is one of the widely used classes of unsuper-

vised learning techniques. Many methods have been intro-

duced in the literature to group the individual objects in a pop-

ulation within which the objects are more similar, such as self-

organizing maps (SOMs) [1], k-means [2], hierarchical clus-

tering [3], self-organizing oscillator networks (SOONs) [5],

fuzzy clustering [6], model-based clustering [7] and others.

However, robustness and reliability are always problems such

that none of the methods is a perfect method which always

gives the best results for all types of datasets.

In order to enhance the robustness of clustering, the idea

of clustering ensembles has been proposed where the results

of many clustering experiments are combined. However,

many obstacles have been found while combining results

from different clustering experiments [8]. One main problem
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is that due to the unsupervised nature of clustering, it is not a

straightforward task to map a specific cluster from one of the

clustering results to its corresponding cluster from another

clustering result. Another problem is that different cluster-

ing results may give different numbers of clusters while the

correct number of clusters is unknown.

Consensus function method has been employed as an

essential step to solve aforementioned problems in clus-

tering ensembles. There are many methods for consensus

function, including relabelling and voting [9], co-association

matrix [10], hypergraph methods [11], weighted kernel con-

sensus functions [12], non-negative matrix factorization [14],

greedy algorithms [13], and others. In all of the aforemen-

tioned methods, the final consensus partition assigns each

object to one of the final clusters exclusively, that is, no ob-

jects are unassigned and no objects are assigned to multiple

clusters. In some cases this does not give the best view of the

dataset. For instance, in gene discovery through gene clus-

tering, it is common that a single gene participates in many

biological processes and thus has a close profile to different

clusters at the same time [15]. Applying many clustering

experiments over such set of genes may result in the assign-

ment of this gene correctly to different clusters in different

experiments. This kind of information has not been explored

thoroughly up to now except in some studies such as [15].

Moreover, in many applications, the best view for the data

points might not be the one that assigns all of them into dis-

tinct clusters. In some applications, one might want to focus

on small subsets of points that make up the clusters’ cores

while accepting that some potentially important points are

out of consideration. In some other applications one might

like to get large clusters that contain all of the possible data

points while accepting that some data points are assigned in

multiple clusters.

In this paper, we propose a novel clusters ensemble

method, Binarization of Consensus Partition Matrix (Bi-

CoPaM) [16], which provides a new paradigm, or a view, of

data clustering in order to tackle the aforementioned issues.

This method exploits the information provided by different

clustering results through generating consensus partitions that
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allow single object to be assigned to multiple clusters or to

be unassigned to any of them at all. This method is a tun-

able tool which allows the researcher to tighten or widen the

clusters according to the needs of a specific research. This

Bi-CoPaM method is based on relabelling and voting meth-

ods which assume that the number of clusters is known and

fixed for all of the partitions. The main steps of the algorithm

are: partitions generation, relabelling, fuzzy consensus parti-

tion matrix (CoPaM) generation and binarization. There are

many advantages of identifying these multiply assigned or

unassigned objects, for example, in some applications, such

as gene discovery, this may have a direct meaning which is

that these genes actually belong to these different biological

groups in the case of the multiple-assigned genes, or that they

really do not belong to any (irrelevant genes to the problem

under consideration) in the case of the unassigned ones. In

other applications, these objects may be considered uncertain

and be taken into further analysis and discussions. We em-

ploy a very simple example using a synthetic gene dataset to

show how the proposed method works.

This paper is organized as follows: Sec. 2 details the pro-

posed method Bi-CoPaM, Sec. 3 discusses the empirical re-

sults of applying this method on a synthetic gene dataset and

Sec. 4 concludes the paper.

2. BI-COPAM METHOD

Assume that the original problem is to group M objects

into K clusters. Clustering is carried out over R different

experiments which generate R different partition matrices

{U1, · · · ,UR}. The goal is to find the final consensus binary

partition (CBP) B∗ which relaxes the conventional partition-

ing constraints by allowing some objects to be assigned to

multiple clusters at the same time or to be not assigned at

all in a way which best reflects the information provided by

the partitions. This section describes the principles of the

proposed method Binarization of Consensus Partition Matrix

(Bi-CoPaM) which has four main steps and will be detailed

in the following subsections.

2.1. Partitions Generation

In this initial step, R clustering experiments are carried out to

generate R partitions. Different experiments can be set up by

using different clustering methods with different parameters,

i.e. using the same clustering method with different parame-

ters generates different partitions.

Each clustering result can be presented in the form of a

fuzzy partition matrix. The matrix UK×M is a 2D matrix

with K rows representing the clusters and M columns repre-

senting the objects. Each element of the matrix ui,j ∈ [0, 1]
represents the membership value of the j-th object in the i-th

cluster. A value of 0 means that this object does not belong to

this cluster at all and a value of 1 means that it fully belongs

to it. The properties of the partition matrix is mathematically

expressed by

(1) ui,j ∈ [0, 1], 1 ≤ i ≤ K, 1 ≤ j ≤ M,

(2)
∑K

i=1 ui,j = 1, 1 ≤ j ≤ M,

(3) 0 <
∑M

j=1 ui,j < M, 1 ≤ i ≤ K.

2.2. Relabelling

Due to the nature of unsupervised learning where the gen-

erated clusters do not have meaningful labels, the results of

different clustering experiments over the same dataset are not

guaranteed to be aligned. Relabelling a partition matrix U to

be aligned with a reference partition matrix U
ref aims at find-

ing a matrix Ū which represents one of the permutations of

the rows of U such that its similarity to U
ref is maximized.

This optimization problem is formulated mathematically in

(1):

Û = arg max
∀perm(U)

Γ(Uref , perm(U)), (1)

where perm(U) is a permutation of the rows of U and Γ(·, ·)
measures the similarity between any two partitions.

The size of the search space is K! which makes any brute

force search infeasible solution for large values of K(K ≥ 8).
For larger values of K, different heuristic approaches can be

used to tackle this problem. The approach which is adopted

in this paper is the min-max approach which is detailed in the

steps below:

(1) A dissimilarity distance matrix SK×K is constructed

by calculating the pairwise Euclidean distance between the

rows (clusters) of the matrix U and the rows of the refer-

ence matrix U
ref .

(2) The minimum value in each of the columns is found.

(3) The maximum value of these minima is identified then

the rows (clusters) from U and U
ref which correspond to

this similarity value are mapped.

(4) The row and the column which show the aforemen-

tioned value are deleted from the similarity matrix.

(5) If all of the K rows from U and U
ref are mapped,

the algorithm terminates, otherwise it goes back to step (2)

with the reduced similarity matrix.

2.3. CoPaM Generation

The objective of this step is to relabel the clusters of all of

the partition matrices to be aligned, then to find the element

by element mean of all of them to generate the CoPaM U
∗.

In order to relabel the clusters in one of the partitions, there

should be a reference partition with which the comparisons

are held. One suggestion is to consider the first partition as the

reference and relabel all of the others according to it. In [8], it

is suggested that an intermediate fuzzy CoPaM U
int(k) is ini-

tialized with the values of the first partition U
1, and then the
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other partitions are relabelled and fused with this intermedi-

ate matrix one by one while considering it as the reference at

each step. This later suggestion is the one which is considered

in this paper.

Mathematically, let Û
r be the relabelled partition ma-

trix of the partition U
r and let Uint(k) be the intermediate

partition matrix after the k-th stage, i.e. after relabelling

and fusing the partitions {U1, · · · ,Uk}. Let the function

Relabel(U,Uref ) denote relabelling the partition matrix U

by considering U
ref as the reference partition. Equation (2)

shows how the intermediate partition matrix can be calculated

by the normal approach and the recursive approach:

U
int(k) =

1

k

k
∑

r=1

Û
r =

1

k
Û

k +
(k − 1)

k
U

int(k−1). (2)

Generating the fuzzy CoPaM is achieved by following the

algorithm shown in the following steps:

(1) Uint(1) = U
1

(2) For k = 2 to R

a. Ûk = Relabel(Uk,Uint(k−1))

b. Uint(k) = 1
k
Û

k + k−1
k

U
int(k−1)

(3) U∗ = U
int(R)

This final CoPaM U
∗ is then passed to the binarization

step which is discussed in the next section.

2.4. Binarization

This step is the primary novelty of the proposed novel

method. The information which is provided by the final

CoPaM U
∗ is used to generate a CBP B

∗. The CBP B
∗ is a

pseudo-partition matrix with K rows for the clusters and M

columns for the objects, where each column contains either

unique 1 or multiple 1s or no 1 at all, representing that the

object belongs to either unique cluster or multiple clusters or

none cluster at all, respectively. The properties of B∗ is given

by

(1) b∗i,j ∈ {0, 1}, 1 ≤ i ≤ K, 1 ≤ j ≤ M,

(2) 0 ≤
∑K

i=1 b
∗
i,j ≤ K, 1 ≤ j ≤ M,

(3) 0 ≤
∑M

j=1 b
∗
i,j ≤ M, 1 ≤ i ≤ K.

Different binarization techniques are proposed in the fol-

lowing part to consider different objects of view of the clus-

tering results. There are two measurements monitoring the

status of the binarization techniques: one is Mmulti indicat-

ing the number of objects belonging to more than one cluster,

and the other is Mun indicating the number of objects be-

longing to none of the clusters.

2.4.1. Binarization Techniques

There will be five binarization techniques presented as fol-

lows:

Intersection Binarization (IB): This is the strictest bina-

rization technique where an object is assigned to a cluster if

all of the partitions map this object to that cluster. Mathemat-

ically, this is formulated as:

b∗i,j =

{

1, u∗
i,j = 1

0, otherwise
(3)

This technique results in Mmulti = 0 and Mun ≥ 0.

Maximum Value Binarization (MVB): Each object is

assigned to the cluster to which its maximum membership

value objects. If more than one cluster share the same max-

imum value, it is assigned to all of them. Its mathematical

formula is:

b∗i,j =

{

1, u∗
i,j = max1≤k≤K u∗

k,j

0, otherwise
(4)

This technique results in Mmulti ≥ 0 and Mun = 0. The

value of Mmulti is usually very small and might reach 0.

Value Thresholding Binarization (α-cut) (VTB-α):

Each object is assigned to all of the clusters in which its

membership values are not less than a threshold α. The

mathematical formula is:

b∗i,j =

{

1, u∗
i,j ≥ α

0, otherwise
(5)

This technique results in Mmulti = 0 for α > 0.5 and

Mmulti ≥ 0 for α ≤ 0.5. In general, Mun ≥ 0 and its value

increases when the value of α increases.

Top Binarization (TB): This is a relaxed version of the

maximum value binarization technique such that each object

is assigned to the maximum membership value cluster and to

all of the clusters in which its membership values are within

a certain difference (δ) bellow the maximum. The mathemat-

ical formula is:

b∗i,j =

{

1, u∗
i,j ≥ max1≤k≤K

[

u∗
i,j

]

− δ

0, otherwise
(6)

This technique results in Mmulti ≥ 0 and Mmulti = 0. The

value of Mmulti is larger than that of the maximum binariza-

tion technique and increases as the value of δ increases.

Difference Thresholding Binarization (DTB): This is a

stricter version of the maximum value binarization technique

such that each object is assigned to the maximum membership

value cluster only if the value of the closest competitor cluster

is at least as far from the maximum as a predefined difference

(δ). The mathematical formula is:

b∗i,j =

{

1, u∗
i,j − u∗

k,j ≥ δ, 1 ≤ k ≤ K, k 6= i

0, otherwise
(7)

For δ > 0, this technique results in Mmulti = 0 and Mun ≥
0. The value Mun increases as the value of δ increases.
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2.4.2. Binarization Techniques Discussion

Different binarization techniques may suite different applica-

tions, and even for the same application, different binariza-

tion techniques may reveal different pieces of information by

viewing the data from different points of view. For example,

using the IB, the DTB or the VTB with high values of α can

find the tightest clusters. This gives an idea about the objects

that are relatively clearly assigned to one cluster. Using the

VTB with small values of α or the TB with high values of δ

may result in plump clusters which contain these objects that

are somehow likely to be in. This can be useful in identify-

ing the objects that play rules in different clusters and differ-

ent applications may find different meanings for this. For in-

stance, in gene clustering, this mean that these genes are par-

ticipating in different biological functional groups. The MVB

and TB with small values of δ are good to find the most rea-

sonable final clustering results with a few multi assignments.

The value of δ can be tuned for the best results.

3. DATA, RESULTS AND ANALYSIS

3.1. Data

An artificial microarray dataset is studied in this paper which

is a synthetic periodic gene expression dataset. It consists of

450 synthetic gene expressions over 24 time points. The ex-

pressions were synthesized to show periodic sinusoidal pat-

terns that cover two complete cycles over the time given time

points. The 450 genes belong to 5 different groups that are

characterized by phase shift values of their patterns. The

method of the synthesis was proposed in [17] and used in

many researches [18]. For this paper, the synthetic param-

eters that control the noise in the data were tuned to result in

a noisy dataset with an SNR value of about 2.9 dB.

3.2. Experiment Setup

Four clustering methods with different configurations were

applied over the dataset to generate sets of clustering parti-

tions. Then the CoPaM was generated which was then bina-

rized using different binarization techniques to generate the

final results which were analyzed. Table 1 lists the details of

the applied clustering experiments.

3.3. Results and Analysis

Table 2 shows the results of the binarization techniques when

applied over the synthetic dataset. The first column of each

of the tables shows the sequential index of the binarization

experiment, the second and the third columns show the name

and the parameter value of the employed binarization tech-

nique, the next set of columns show the numbers of the genes

assigned to each of the clusters and the last two columns show

the numbers of the unassigned and the multi-assigned genes

No. Method Parameters 

1 k-means Empty clusters were dropped and Kaufman deterministic initialization [2] was used.

2 SOMs Batch mode learning, 2D hexagonal grids and bubble neighbourhood (Repeated 20 
times then combined) 

3 SOMs Batch mode learning, 2D hexagonal grids and Gaussian neighbourhood. (Repeated 
20 times then combined) 

4 HC Single linkage 

5 HC Complete linkage 

6 HC Average linkage 

7 HC Centroid linkage 

8 HC Ward linkage 

9 HC Median linkage 

10 SOON � � ����� ���� �� ��� 	�� 
�� ��� ��� ���� �	�


�� � ����� ���	� ���
� ����� ����� ��	� ���� ��



�� � ����� ��	� ����

where � is the constant which controls the concavity of the mapping function, �� is 

the constant of excitation and �� is the radius of the clusters. 

For each one of the datasets, the results of using all of the possible parameters’ 

combinations were combined into one partition which was given ten times the 

weight of the other experiments in the final fuzzy CoPaM. 

Table 1. Clustering experiments setup.

No. Technique 
Param. 

(� or �) 

Clusters  
�
��

�
�����

C1 C2 C3 C4 C5 

1 IB - 0 0 0 0 0 450 0 

2 UB - 329 371 385 292 372 0 450 

3 MVB - 90 98 90 81 91 0 0 

4 TB 0.05 90 100 90 83 91 0 4 

5 TB 0.1 90 101 90 87 92 0 10 

6 TB 0.2 92 103 90 90 92 0 17 

7 TB 0.4 106 118 92 91 99 0 50 

8 VTB 0.3 102 109 91 91 98 0 41 

9 VTB 0.5 89 96 90 78 91 6 0 

10 VTB 0.7 76 89 87 50 77 71 0 

11 VTB 0.8 12 85 81 1 61 210 0 

12 VTB 0.9 0 79 0 0 15 356 0 

13 DTB 0.1 89 93 89 78 91 10 0 

14 DTB 0.3 86 90 88 70 80 36 0 

15 DTB 0.6 19 86 82 15 67 181 0 

16 DTB 0.8 0 80 0 0 36 334 0 

�

Table 2. Synthetic data set Bi-CoPaM results.

respectively. As this data set was synthesized, it should have

five groups of genes, each of them consists of 90 genes that

show periodic patterns with the same phase shift, i.e. peaking

at the same time points.

The MVB technique results in the closest partitioning re-

sult to crisp clustering with the minimum numbers of multi-

assigned and unassigned genes. Its results here are close to

the aforementioned suggestion. From the figures in Table 2,

it can be seen how the clusters shrink in the DTB technique’s

results while they are widened and overlap in the TB tech-

nique’s results. The researcher might be interested in getting

the core genes of the cluster (1) by getting the 12 genes that

are assigned to it in the VTB technique with α = 0.8, or he

might be interested in the extended version of cluster (1) to

study all of the genes that have some potential in being in this

cluster by getting the 106 genes assigned to this cluster by TB

with δ = 0.8. Another observation is that the second cluster

is clearly purer than the other four ones as it maintains most

of its genes even in the extreme tightening conditions except
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(a) Synthetic dataset − MVB − Clusters mean patterns
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(b) Multi−assigned gene, Gene #268 − G2 & G4

C1 (90 genes)

C2 (98 genes)

C3 (90 genes)

C4 (91 genes)

C5 (91 genes)

Fig. 1. Clustering results of synthetic dataset. (a) Synthetic

clusters mean patterns (b) Multiple assigned gene: the gene

♯268 which is assigned to C2 and C4 simultaneously in TB

with δ=0.05.

for the IB. The fourth cluster is the noisiest as it tends to lose

its genes faster than the others.

Fig. 1 (a) shows the mean patterns for the five clusters

from the MVB technique. It is clear that all of them show

periodic patterns with different phase shifts for different clus-

ters as expected. By slightly widening the clusters using TB

with δ = 0.05, four genes are multi-assigned. One of these

genes, namely, the 268-th gene out of 450, is assigned to both

clusters (2) and (4). This gene is plotted in Fig. 1 (b) and its

high peak at the time point twelve and the slightly lower peak

at the time point nine clearly justify its membership in both

cluster one and cluster four when compared with the mean

patterns in Fig. 1 (a) and it is clear that it has two peaks at

the 12-th and the 14-th time points which correspond to the

peaking time of the mean expressions of these two clusters.

4. CONCLUSIONS

A novel method of ensemble clustering, Bi-CoPaM, was pro-

posed in this paper to tackle the clustering problem in a new

sense. This new method exploits the information provided

by many partitions generated by different clustering experi-

ments. Bi-CoPaM combines these partitions to generate one

CoPaM which is then binarized using one of the six pro-

posed binarization techniques to generate final binary parti-

tions. The proposed binarization techniques relax the con-

ventional clustering conditions by allowing genes to be as-

signed to multiple clusters at the same time or not to be as-

signed to any of the clusters at all. Different binarization tech-

niques reveal different pieces of information from the CoPaM

such as the relative tightness of the clusters, the clusters’ tight

cores, the wide overlapping clusters, and the special genes

that are either multi-assigned or unassigned. A synthetic pe-

riodic gene dataset was analyzed by this method and the nu-

merical results showed that the method has been successful in

showing different horizons in gene clustering.
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