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ABSTRACT

In this paper, we propose a new self splitting-merging clus-

tering algorithm, named splitting-merging awareness tactics

(SMART). The novel framework, which integrates many

techniques, starts with one cluster and employs a splitting-

while-merging process. The SMART has self-awareness to

split and merge the clusters automatically in iterations. Both

the framework and the techniques are detailed and illustrated

by a good benchmark test. Furthermore, three microarray

gene expression datasets are studied using our approach. The

numerical results show that our proposal is automotive and

effective.

Index Terms— self splitting-merging clustering algo-

rithm, microarray

1. INTRODUCTION

Clustering, also known as unsupervised learning, has been

used for decades in many fields, such as image processing,

data mining and artificial intelligence [1, 2], and in recent

years, has benefited microarray gene expression data analysis

in genomic research [3,4]. The goal of the clustering analysis

is to group individual genes or samples in a population within

which the objects are more similar to each other than those in

other clusters.

There are a lot of clustering algorithms in the literature,

which generally are categorized into many different families,

such as partitional clustering, hierarchical clustering, model-

based clustering, density-based clustering, fuzzy clustering,

neural networks based clustering, and so on [1–3]. For each

different application, there are a number of algorithms pro-

viding relatively good clustering results. However, most of

these successful clustering algorithms highly depend on the

parameter setting and initialization, for example, the number

of clusters and the initialization of the centroids (partitional

clustering) or the weights (neural network based clustering).

If the number of clusters is not set to the number of natural

clusters or the centroids/weights are initialized randomly, the

clustering results would be unreliable and inconsistent.

The project (Ref. NIHR-RP-PG-0310-1004-AN) is supported by Na-

tional Institute for Health Research (NIHR), UK.

Recently, a variety of self splitting-merging clustering

algorithms have been developed for both general purpose

clustering [5, 6] and specific use, like gene expression data

analysis [7]. A competitive learning paradigm, called one-

prototype-take-one-cluster (OPTOC) [5], was proposed in the

self-splitting clustering algorithm. There are two advantages

of the OPTOC that, firstly, it is not sensitive to initializa-

tion, and secondly, in many cases, it is able to find natural

clusters. However, its ability to find the natural clusters de-

pends on the determination of suitable threshold, which is

difficult [7]. Being aware of the shortcoming of the OPTOC,

a self-splitting-merging competitive learning (SSMCL) algo-

rithm [7] based on the OPTOC paradigm was developed for

gene expression analysis. The SSMCL initially over-clusters

the whole dataset using the OPTOC principle and then merge

the groups based on the second order statistical characteris-

tics. However, although the number of clusters can be initially

set to any value larger than the number of natural clusters, the

SSMCL still needs to properly set it as close to the number of

natural clusters as possible, otherwise, too much computing

power will be wasted due to the unnecessary over-clustering

and merging. With the similar principle as the SSMCL,

over-clustering and merging, a cohesion-based self-merging

(CSM) algorithm, which was reported in [6] to combine

the k-means and hierarchical clustering, also faces the same

problem of setting the initial number of clusters.

In this paper, we propose a new self splitting-merging

clustering algorithm, named splitting-merging awareness tac-

tics (SMART). The novel approach, which integrates many

techniques, starts with one cluster and employs a splitting-

while-merging process. In such process, the SMART has self-

awareness to split and merge the clusters automatically in iter-

ations. The method employs the modified OPTOC technique

to split the clusters. While splitting, a merging criterion is ap-

plied to indicate if a merging should take place. Finally, the

process stops when a stopping criterion is satisfied, otherwise

the splitting continues. A good benchmark test using quadra-

ture phase shift keying (QPSK) data will demonstrate each

step in the SMART flow. Furthermore, three microarray gene

expression datasets are studied using our approach. The nu-

merical results show that our proposed method is automotive

and effective..
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The rest of the paper is organized as follows: Sec. 2 de-

scribes the details of the SMART and demonstrates all the

steps in the flow. Sec. 3 briefly introduces the datasets ex-

plored in the paper and the numerical results are presented.

Finally, conclusions are drawn in Sec. 4.

2. SMART ALGORITHM

Suppose that we are going to partition the dataset X =
{xi|1 ≤ i ≤ N}, where xi ∈ R

M×1 denotes the i-th ob-

ject, M is the dimension and N is the number of objects. In

this section, we describe the details of the splitting-merging

awareness tactic (SMART). Since the SMART is an integra-

tion of many techniques, for the sake of convenience, we will

firstly overview the SMART and present the flow in Sec. 2.1,

then detail each technique in Sec. 2.2, at last, demonstrate

each step in the flow using an example in Sec. 2.3.

2.1. Overview

The SMART is an integration of four techniques, which are

going to be presented in the next subsection. The flowchart

of the algorithm is illustrated in Fig. 1. The SMART starts

with one cluster (K = 1, where K is the number of clusters)

and finds the highest local density center by using Technique

1. Subsequently, the data goes through a splitting-while-

merging process, where splitting and merging are automati-

cally conducted in iterations. In each iteration, the first step

is that the SMART splits one of clusters into two using Tech-

nique 2. After splitting, in the second step, the new clustering

is censored by a merging criterion, which is associated with

the Technique 3. If the condition for merging is satisfied,

then merge the two clusters which meet the criterion, oth-

erwise skip the merging step. The last step of the SMART

is termination-check, where a stopping criterion, which em-

ploys Technique 4, is applied. If the condition for termination

is not satisfied, the SMART goes to the next iteration and

continues to split, otherwise, the SMART is terminated. Note

that the output of the SMART is the estimates of the number

of clusters and the centroids of all clusters, rather than the

clustering results. Depending on different applications, the

data can be classified by simple nearest-neighbour method

or k-means algorithm using the estimated centroids in the

initialization.

2.2. Technical Details

The SMART employs four techniques to obtain self-awareness

of splitting and merging. The techniques are organically inte-

grated as presented in previous subsection. Here, their details

are presented as follows:

Technique 1: The purpose of Technique 1 is to find the

highest local density center. We introduce a fraction α to

control the number of local neighbouring objects for a given
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Fig. 1. The flow chart of the SMART.

objects. Note that, to be local, α is preferably chosen in the

range of (0.05, 0.2). Thus, there are αN neighbouring objects

taken into account for local distance calculation and we may

obtain the local distance Dα for all the objects in the dataset.

Dα is mathematically given by

Dα(i) =
∑

1≤l≤αN

D(xi,x
i
l) (1)

where xi
l denotes the l-th object closest to the i-th object.

D(·, ·) denotes the calculation of the distance between two

objects. The first initial centroid is the object that has the

minimum local distance as

C1 = xI , where I = arg min
1≤i≤N

Dα(i). (2)

Technique 2: We combine the OPTOC paradigm [5] with

the Kaufman Approach (KA) [8] in this technique. The KA

successively selects the centroids, which, however, are cen-

tres with respect to the whole dataset, rather than individual

group. Hence, we employ the KA as the initial step and OP-

TOC to refine the centroids. The pseudo-code of Technique 2

is presented in Table 1, where P denotes the centroid, A de-

notes the starting point of the learning process, δ is distance

indicator and nA is the winning counter.

Note that the new centroid is put into a centroid pool

whose members are always used in Technique 2 but not nec-
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Table 1. The pseudo-code for Technique 2.

STEP 1:

for every non-centroid object xi do

for every non-centroid object xj do

Calculate Qji = max (Dj − dji, 0) where dji =
‖xi − xj‖ and Dj = minc dcj being c one of cen-

troids;

end for

Calculate the gain of xi by
∑

j Qji;

end for

Select the non-centroid object xi which maximizes
∑

j Qji

as the new centroid Cnew;

STEP 2:

Calculate the minimum distance between Cnew and other

centroids D. Initialize P as Cnew and A as the mean of

Cnew and the centroid closest to Cnew. i denotes the itera-

tion index.

STEP 3:

Start competitive learning process as follows:

A(i+1) = A(i)+ 1
nA(i) ·δ ·(x−A(i))Θ(P(i),A(i),x)

Θ(a, b, c) =

{

1 if D(a, b) ≤ D(a, c)
0 otherwise

δ(i) =
(

D(P(i),A(i))
D(P(i),x)+D(P(i),A(i))

)

nA(i+ 1) = nA(i) + δ(i) ·Θ(P(i),A(i),x)
P(i+ 1) = P(i) + α(i) · (x− P(i))

α(i) = (1 +D(P(i),x)/D(P(i),A(i)))
−2

STEP 4:

Set Cnew to be resulting P .

essarily to be the final output because some of centroids will

be merged in the merging step. The reason why we still keep

those merged centroids in the centroid pool is to avoid the

case that they are repeatedly selected.

Technique 3: In [6], a similarity measure, namely cohe-

sion, was proposed. The cohesion was defined as follows:

chs(Ci,Cj) =

∑

x∈Ci,Cj
join(x,Ci,Cj)

|Ci|+ |Cj |
, (3)

where Ci is the cluster with the centroid Ci, |Ci| is the size of

the cluster of Ci. join(x,Ci,Cj) defines the similarity of the

two clusters referring to the existence of an object x, which is

defined as

join(x,Ci,Cj) = min (fi(x), fj(x)) , (4)

where fi(x) and fj(x) are the probability density function

(pdf) of the distributions in clusters Ci and Cj . Assume that

an object in each cluster follows a multivariate normal distri-

bution, whose pdf is

f(x) =
1

(2π)M/2(detΨ)1/2
exp

[

−
1

2
(x− µ)TΨ−1(x− µ)

]

,

(5)

where µ and Ψ are mean and covariance matrix, respectively.

Given any cluster C we may obtain the values of (µ, Ψ)

of the cluster using the following formulae:

µ̂ =
1

|C|

∑

x∈C

x, Ψ =
1

|C|

∑

x∈C

(x− µ̂)(x− µ̂)T . (6)

Once a new centroid is found, we can obtain the cohesions of

the new cluster to the other clusters. If the maximum of the

new cohesions is Tchs times larger than that of the old ones,

the two clusters with maximal cohesion should be merged.

We also have a counter counting the number of merging. If

the number of merging is greater than a threshold Tm, we

will terminate the SMART regarding the case as no significant

cluster existing.

Technique 4: This technique is used, co-acting with

Technique 3, to define a stopping criterion to terminate the

SMART. At the end of previous stage, we obtain a centroid

pool which has K ′ members but only K members are final

results. We then obtain the minimum spinning tree (MST) for

these K centroids and get an array Dmst containing (K − 1)
branches of the MST. Thus, an average MST distance can be

obtained by

davemst(K) =
1

K

∑

di∈Dmst

di. (7)

We find that while splitting, davemst(K) will increase with

the increase of K until K meets the number of natural

clusters. To this end, we define the stopping criterion

as

if davemst(K − 1)− davemst(K) > ǫ then

SMART stops,

else

SMART continues splitting,

end if

where ǫ is a small positive value.

2.3. Example

Here, we employ quadrature phase shift keying (QPSK) data

at the signal-to-noise ratio (SNR) level of 15 dB as a bench-

mark test to demonstrate each step in the flow of the SMART.

Fig. 2 illustrate the whole process of the clustering. As shown

in Fig. 2 (a), the first centroid, which is marked by red ×, is

found using Technique 1. Fig. 2 (b) shows the initial P and

A labelled by ⋆ and ◦, respectively, following the STEP 1 of

Technique 2. Fig. 2 (c) shows that the centroid is pulled to the

center by the OPTOC competitive learning. Fig. 2 (d) shows

the clustering results with two clusters, which does not satisfy

the merging and stopping criteria, thus, the splitting contin-

ues. Fig. 2 (e) and (f) show the clustering for three and four

clusters, respectively. Since the splitting continues, as sown

in Fig. 2 (g), the top-right cluster is splitted into two, which

triggers the merging process. The merging step moves the old

centroid of the cluster to a new location which is labelled by ∗
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Fig. 2. The demonstration of the SMART using a benchmark

test.

in Fig. 2 (g). Meanwhile, the new centroid is put into the cen-

troid pool for the use of splitting but ignored in the clustering,

as shown in Fig. 2 (h), where the members of the centroid

pool are labelled by ♦ and the members for final clustering

are labelled by ×. Fig. 2 (i) and Fig. 2 (j) show one more

iteration with merging process and the resulting centroids, re-

spectively. In this case, the SMART continues splitting and

merging until the number of the times of merging exceeds

the threshold Tm, without using Technique 4. It means that

Technique 4 is not necessarily triggered every time. Fig. 2 (k)

shows the final centroids and Fig. 2 (l) shows the final cluster-

ing results. This example indicates that the SMART is more

intelligent than other self spitting and merging algorithms.

3. DATASETS AND NUMERICAL RESULTS

Here, three microarray gene expression datasets are studied

by using the SMART. There are two parameters to be set: one

is Tchs, which indicates if a merging should take place, and

the other is the maximum number of merging Tm. Note that

since the SMART is not sensitive to the parameters, Tchs can

be in [5 10] and Tm can be in [10 20]. For our experiments,

including the QPSK data, we employ Tchs = 5 and Tm = 20.

3.1. Datasets

The three gene expression datasets are explored in this paper,

including a synthetic gene dataset and two Yeast cell cycle

Table 2. Description of the datasets employed in the experi-

ments.
Dataset Clusters Objects (Genes) Samples

Synthetic gene data [9] 5 450 24

Stanford Yeast data [10, 11] 5/6 384 17

α-38 Yeast data [12] 4 500 25

1 5 9 13 17 21 24
−2

0

2
(a)

1 5 9 13 17 21 24

−2

0

2

(b)

1 5 9 13 17 21 24

−2

0

2

(c)

5 10 15 20

−2

0

2

(d)

1 5 9 13 17 21 24

−2

0

2

(e)

1 5 9 13 17 21 24

−2

0

2

(f)

Fig. 3. The clustering results for the synthetic gene expression

dataset.

datasets, are listed in Table 2. The synthetic dataset, which we

investigate here, models gene expression data with cyclic be-

haviour. Classes are modelled as genes that have peak times

over the times course as presented in [9]. In this work, we

generate a dataset with 450 genes and 24 samples, which has

five clusters. The yeast cell cycle data, which is available at

http://faculty.washing ton.edu/kayee/model/ [10], is also in-

vestigated. It consisted of 384 genes over 17 time points taken

at 10 minutes intervals. It was commonly believed that the

time course was divided into five phases including early G1,

late G1, S, G2, and M phases biologically. But recently, our

study reveals a numerical sixth phase rather than a biological

one, which is called Q phase and should be the boundary be-

tween previous M phase and the present G1 phase [11]. An-

other yeast cell cycle dataset is α-38 dataset presented in [12].

It consists of 500 genes with highest periodicity scores and

each gene has 25 time samples. In this dataset, four phases,

namely, G1, S, G2 and M phases, are accepted.

3.2. Numerical Results

In Fig. 3, the final clustering results for the synthetic gene

expression dataset are presented. The SMART automatically

stops at K = 5, which is the exact number of natural clusters.

The means of members in five different clusters are shown

in Fig. 3 (a), where it is easy to discern the five clusters. All

members in each cluster and the errorbar plot of the cluster are
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Fig. 4. The clustering results for the Stanford Yeast cell cycle

dataset.

shown individually in Fig. 3 (b)-(f), where the bolder black

lines, like spines, are the errorbar plots.

The results for the Stanford Yeast cell cycle dataset are

shown in Fig. 4, which also illustrates the members and error-

bar plots for individual cluster, from (a) to (f) respectively.

It is worth noting that Fig. 4 (f) indicates the Q phase re-

ported in [11], which clearly has distinguishable pattern to

other clusters although the number of members is small.

Fig. 5 shows the clustering results for the α-38 Yeast cell

cycle dataset, where four clusters are clearly displayed. The

most attractive point of the proposed SMART scheme is that

for above three different datasets, it has awareness of split-

ting, merging and terminating without the need of tuning the

parameters and setting the number of clusters.

4. CONCLUSIONS

In this paper, we proposed a new self splitting-merging clus-

tering algorithm, named splitting-merging awareness tactics

(SMART). The novel framework, which integrates many

techniques, starts with one cluster and employs a splitting-

while-merging process. The SMART has self-awareness

to split and merge the clusters automatically in iterations.

Both the framework and the techniques were detailed and

illustrated by a good benchmark test. Furthermore, three

microarray gene expression datasets were studied using our

approach. The numerical results show that the SMART is

automotive and effective..
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