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ABSTRACT

In recent years many works related to the design of block-based
transceivers have been published. The main target of this research
activity is to optimize the use of the spectral resources in broad-
band transmissions. A possible way to address this problem is to
reduce the amount of redundancy required by block transmissions
to avoid interblock interference. An efficient solution is to employ
zero-padding zero-jamming (ZP-ZJ) transceivers, which allow the
transmission with reduced redundancy. ZP-ZJ systems have been
successfully employed in the context of linear transceivers. This
paper shows how the ZP-ZJ concept can be applied in decision-
feedback equalization. Some performance analyses based on the
resulting mean-square error and error probability of symbols are in-
cluded to show the possible degrading effects of the reduction in
the amount of redundancy. Nevertheless, simulation results illustrate
that data throughput and average mutual information between trans-
mitted and estimated symbols can be enhanced significantly without
affecting the system performance, for a certain level of signal-to-
noise ratio at the receiver.

Index Terms— Block DFE, reduced redundancy, throughput.

1. INTRODUCTION

Equalization plays an important role in any modern digital trans-
mission scheme. Linear equalizers are still the preferred choice in
practical systems due to their computational simplicity. However,
the constant performance improvements of digital processors have
enabled the use of nonlinear equalizers as well. The nonlinearities
induce certain degrees of freedom which are not exploited in lin-
ear equalization. Among the nonlinear receivers, decision-feedback
equalizers (DFE) [1, 2, 3, 4] are the most popular since they fea-
ture good tradeoff between performance improvements and com-
putational complexity. Indeed, the computational burden related to
DFE systems does not increase too much since the nonlinearity is in-
troduced through a simple hard-decision detection which takes place
before feeding back the symbols in the equalization process.

In modern communications, it is common practice the segmen-
tation of the overall data string into smaller blocks that are trans-
mitted separately in the so-called block-based transmission. Such
separation in blocks is rather useful in block-based DFEs, since any
symbol error within a given data block is not propagated across dif-
ferent blocks, thus limiting the harmful effects commonly caused by
feedback-based equalization. Nonetheless, the undesired superposi-
tion of signals inherent to broadband communications generates in-
terblock interference (IBI) between adjacent transmitted data blocks.

∗,†Thanks to CNPq, FAPERJ, and CAPES agencies for funding.

IBI is a degrading effect present in block transmissions that can be
eliminated by transmitting redundant signals, such as zero-padded
or cyclic-prefixed signals [4, 5].

Zero-padding (ZP) is a very efficient way of adding guard in-
tervals between data blocks in order to mitigate IBI [4, 6]. For
multipath channels modeled as finite impulse-response (FIR) filters
with order L, traditional approaches include at least L zeros as
prefix or suffix of each transmitted data block (see, e.g., [4] and
references therein). The inclusion of such redundant signals ob-
viously reduces the spectral efficiency associated with the related
transceivers. Lin and Phoong [7] have proposed a method to dimin-
ish this waste of bandwidth, namely, zero-padding zero-jamming
(ZP-ZJ) transceivers [7, 8]. Such systems allow one to transmit a
reduced amount of redundant zeros, ranging from the minimum,
⌈L/2⌉, to the most commonly used value L [7]. However, just few
works have taken into account this feature and all of them consider
only linear equalizers (see, e.g., [8, 9, 10, 11]).

This work shows that ZP-ZJ techniques can also be successfully
applied in the context of DFE systems. The paper describes how to
apply known minimum mean-square error (MMSE) solutions with
zero-forcing (ZF) constraints to design block-based DFEs within the
framework of reduced-redundancy systems. The paper also includes
some mathematical results describing the monotone behavior of sev-
eral figures of merit related to the proposed ZP-ZJ DFE systems
(such as MSE of symbols and error probability of symbols) The
proposed analyses indicate that the reduction in the amount of re-
dundancy leads to loss in performance of these figures of merit, not
including throughput. In fact, throughput may increase by reducing
the amount of redundant signals, as will be clearer in the simulation
results.

1.1. Organization

This paper is organized as follows: Section 2 contains the description
of the proposed block-based DFE with reduced redundancy (ZP-ZJ
DFE). In Section 3 we state some mathematical results which de-
scribe formally the monotone behavior of several figures of merit
associated with the proposed DFE. Simulation results are in Sec-
tion 4, whereas the concluding remarks are in Section 5.

1.2. Notation

Given a real number x, ⌈x⌉ stands for the smallest integer greater

than or equal to x. The notations E[·] and [·]H stand for expected
value and Hermitian transpose operations on [·], respectively. The set

C
M×N denotes all M × N matrices comprised of complex-valued

entries, whereas C
M×N [x] denotes all polynomials in the variable x

with M × N complex-valued matrices as coefficients.
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Fig. 1. General structure of the proposed block-based ZP-ZJ DFE.

2. DFE WITH REDUCED REDUNDANCY

Assume that we want to transmit a vector s ∈ CM×1 ⊂ C
M×1, with

M ∈ N symbols drawn from a given constellation C, through an FIR
channel whose transfer function is

H(z) , h(0) + h(1)z−1 + · · · + h(L)z−L, (1)

with h(l) ∈ C, for each l ∈ {0, 1, · · · , L} ⊂ N. It is possible
to show that the matrix representation of such block-transmission
scheme is given as [4, 7]

H(z) , HISI + z−1
HIBI ∈ C

N×N [z−1], (2)

in which N ∋ N ≥ max{M, L} is the number of transmitted ele-
ments in a block, while HISI and HIBI are Toeplitz matrices.

The first row of HISI is [h(0) 0T
(N−1)×1], whereas the first col-

umn is [h(0) h(1) · · · h(L) 0T
(N−L−1)×1]

T . In matrix HIBI, the

first row is [0T
(N−L)×1 h(L) h(L − 1) · · · h(1)], whilst the first

column is 0N×1.
In order to eliminate the IBI effect modeled by matrix HIBI, one

can append K , N − M zeros to the transformed vector Fs at the
transmitter end, in which F ∈ C

M×M is a precoder matrix. The
received vector of size N will still suffer from IBI effects in its first
L−K elements. The receiver thus ignores these first L−K signals,
working only with the remaining N − (L−K) = (M +K)− (L−
K) = M + 2K −L elements. These elements are first transformed

into M signals by the feedforward matrix G ∈ C
M×(M+2K−L), as

depicted in Fig. 1. The process of adding zeros at the transmitter end,
and discarding elements at the receiver end is denominated zero-
padding zero-jamming (ZP-ZJ) [8].

The authors in [7] show that, if one assumes that matrices F and
G are full-rank, the zero-forcing solution to ZP-ZJ transceivers can
be achieved, i.e.,

[0M×(L−K) G]H(z)[FT
0M×K ]T = IM , (3)

as long as the number of redundant elements K satisfies the in-
equality 2K ≥ L. From now on, we shall assume that K ∈
{⌈L/2⌉, ⌈L/2⌉ + 1, · · · , L} ⊂ N.

As illustrated in Fig. 1, after the multiplication by the feedfor-
ward matrix, the received vector passes through a usual decision-
feedback processing [1, 2, 3, 4]. In this figure, š ∈ CM×1 denotes
the vector containing the detected symbols and B ∈ C

M×M is the
feedback matrix. This matrix is chosen strictly upper triangular, so
that the symbol estimation within a data block is sequentially per-
formed, guaranteeing the causality of the process [4].

The ZP-ZJ structure of the DFE proposed in Fig. 1 can be simpli-
fied if one incorporates the ZP-ZJ processing into the channel model,
yielding an effective channel matrix H,1 which is Toeplitz and has
dimension (M + 2K − L) × M . In this case, the first row of H

1Sometimes, we shall denote H as H(K) in order to emphasize that the
related effective channel matrix is built considering the transmission of K
redundant zeros.

is [h(L−K) h(L−K−1) · · · h(0) 0T
(M+K−L−1)×1], whereas the

first column is [h(L−K) h(L−K+1) · · · h(L) 0T
(M+K−L−1)×1]

T .
The equivalent transceiver structure is depicted in Fig. 2.

Under the common simplifying assumption of perfect deci-
sions [4], one has š = s, yielding ŝ = (GHF − B)s + Gv̄ (see
Fig. 2). Hence, the overall MSE of symbols, E , is given as [4]

E , E{‖ŝ − s‖2
2} = σ2

s‖GHF − B − IM‖2
F + σ2

v‖G‖2
F, (4)

where ‖ · ‖2 stands for the standard norm-2 of a vector, whereas
‖ · ‖F denotes the standard Frobenius norm of a matrix. In addi-
tion, we have assumed that the transmitted vector s and the channel-
noise vector v̄ are respectively drawn from zero-mean jointly wide-
sense stationary (WSS) random sequences s and v̄.2 Moreover,
we have assumed that s and v̄ are uncorrelated, i.e., E{sv̄

H} =
E{s}E{v̄}H = 0M×(M+2K−L), and that σ2

s , σ2
v ∈ R+.

Now, the design of matrices F, G, and B can be formulated as
an MSE-based optimization problem, as follows [4]:

min
F,G,B

˘

σ2
s‖GHF − B − IM‖2

F + σ2
v‖G‖2

F

¯

, (5)

subject to:

(GHF − B − IM ) = 0, (6)

‖F‖2
F = M, (7)

[B]mn = 0, ∀m ≥ n, (8)

where, in order to simplify the forthcoming mathematical descrip-
tions, we focus only on MMSE solutions that meet the ZF constraint
in (6). In addition, the constraint in (7) implies that the average trans-
mitted power is not modified by the precoder matrix F, whereas the
constraint in (8) means that the feedback matrix is strictly upper tri-
angular.

The equivalent structure of the proposed block-based ZP-ZJ
DFE illustrated in Fig. 2 matches the general block-based DFE
model described, for instance, in [4]. Therefore, the solutions to the
above optimization problem are already known and can be described
as [4] (p. 816):

F = VHS, (9)

G = RS
H
Σ

−1
H [IM 0M×(2K−L)]U

H
H, (10)

B = R − IM , (11)

in which the above matrices come from the SVD decomposition of
H and the QRS decomposition [4] (pp. 646–652) of ΣH, as follows:

H = UH
|{z}

(M+2K−L)×(M+2K−L)

»

ΣH

0(2K−L)×M

–

| {z }

(M+2K−L)×M

V
H
H

|{z}

M×M

, (12)

ΣH = M

v

u

u

t

M−1
Y

m=0

σm

| {z }

,α

QRS
H = αQRS

H , (13)

2The time index was omitted for the sake of simplicity.
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Fig. 2. Equivalent structure of the proposed block-based ZP-ZJ DFE.

where ΣH = ΣH
H > O is an M×M diagonal matrix containing the

M nonzero singular values of H. The mth diagonal element of ΣH

is denoted as σm. In addition, Q and S are M×M unitary matrices,
whereas R is an M × M upper triangular matrix containing only
1s in its main diagonal. Note that QHΣHS = αR, which means
that, in the special case of a diagonal matrix ΣH > O, the QRS
decomposition is closely connected with the SVD decomposition of
a upper triangular matrix αR whose diagonal elements are constant
and equal to α. See [4, 12] and references therein for further detailed
information on QRS decompositions.

It is worth mentioning that other optimal solutions3 can be de-
rived for ZP-ZJ DFE systems whose equivalent building-block de-
scription is given in Fig. 2.

3. PERFORMANCE ANALYSIS

Several physical-layer figures of merit related to the proposed ZP-ZJ
DFE have close connections with the singular values of the effective
Toeplitz channel matrix H. Lemma 1, which is borrowed from [13],
characterizes the monotone behavior of the singular values of H with
respect to the number of transmitted redundant elements, K.

Lemma 1. Given two fixed natural numbers L and M , let us as-

sume that each effective channel matrix H(K) ∈ C
(M+2K−L)×M

is constructed from the same Lth-order channel-impulse response,
with K ∈ {⌈L/2⌉, ⌈L/2⌉ + 1, · · · , L}. Then

σm(K + 1) ≥ σm(K), (14)

where each σm(K) ∈ R+ is a singular value of H(K).

By using Lemma 1, we can derive a very general result (The-
orem 1) which encompasses as particular cases the majority of the
popular figures of merit of practical interest (e.g., MSE of symbols,
mutual information, and error probability of symbols).

Theorem 1. Let us assume that, for each m ∈ {0, 1, · · · , M − 1},
there exists a function fm : R+ → R such that a performance
quantifier J : {⌈L/2⌉, ⌈L/2⌉ + 1, · · · , L} → R associated with
the proposed ZP-ZJ DFE transceiver can be defined as

J (K) ,
1

M

M−1
X

m=0

fm(σm(K)) or J (K) ,
M

v

u

u

t

M−1
Y

m=0

fm(σm(K)).

(15)

If fm is monotone increasing for all m, then J (K + 1) ≥ J (K),
for all K. Likewise, if fm is monotone decreasing for all m, then
J (K + 1) ≤ J (K), for all K.

Proof. The result follows from the application of Lemma 1 along
with the hypotheses of the theorem.

3For instance, MMSE-based solutions with channel-independent unitary
precoder or Pure MMSE-based solutions [4].

Since the resulting MSE of symbols, E(K) (see (4)), the total
mutual information between transmitted and estimated symbols in a
block, I(K), and the total error probability of symbols in a block,
P(K), are respectively given by [4]:

E(K) = Mσ2
v

M

v

u

u

t

M−1
Y

m=0

1

σ2
m(K)

, (16)

I(K) = M ln

0

@1 +
σ2

s

σ2
v

M

v

u

u

t

M−1
Y

m=0

σ2
m(K)

1

A , (17)

P(K) = cMQ

0

@

A

σv

M

v

u

u

t

M−1
Y

m=0

σm(K)

1

A , (18)

in which c and A are positive real scalars that depend on the partic-
ular digital constellation C, whereas Q(·) is a decreasing function of
its argument, being defined as

R ∋ x 7→ Q(x) ,
1√
2π

Z ∞

x

e−w2/2dw, (19)

then, the following corollary from Theorem 1 holds.

Corollary 1. Given the definitions in Lemma 1, we have

E(K + 1) ≤ E(K), I(K + 1) ≥ I(K), P(K + 1) ≤ P(K),
(20)

with K ∈ {⌈L/2⌉, ⌈L/2⌉ + 1, · · · , L − 1}.

Proof. The inequalities come from the application of Theorem 1,
along with the fact that E(K) is monotone decreasing, I(K) is
monotone increasing, and P(K) is monotone decreasing with re-
spect to each singular value σm(K).

Even though the results from Theorem 1 and Corollary 1 seem
rather reasonable, no previous work has given formal proofs for their
validity.

As a by product of Corollary 1, we have the following result:

let E(K) ,
E(K)
M+K

be the average MSE of symbols and let P(K) ,
P(K)
M+K

be the average error probability of symbols, where the averag-

ing process is taken with respect to the number of transmitted signals

within a block, M +K. Thus, it follows from Corollary 1 that E(K)

and P(K) feature the same monotone behavior of E(K) and P(K),

i.e., E(K + 1) ≤ E(K) and P(K + 1) ≤ P(K).
The previous results may lead us to a wrong conclusion that it

is not worth reducing the number of transmitted redundant elements.
Nevertheless, if we define the average mutual information between

transmitted and estimated symbols within a block as I(K) ,
I(K)
M+K

,

then we cannot say that I(K) is a monotone function of K. This
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Table 1. Average mutual information (in nats).

Channel A B C

SNR [dB] 10 20 10 20 10 20

K = L 1.52 2.99 1.34 2.69 1.20 2.53

K = L − 1 1.64 3.24 1.32 2.77 1.03 2.42

K = L − 2 1.08 2.70 1.29 2.85 0.83 2.26

means that the mutual statistical dependence between transmitted
and estimated symbols may increase, decrease, or even keep the
same value in the average. Indeed, some numerical examples (see
Table 1) in Section 4 show that, for some channels and signal-to-
noise ratios (SNRs), it is worth reducing the amount of redundant
elements from an average mutual-information viewpoint. Note that
this discussion only makes sense when K is not much smaller than

M , otherwise M + K ≈ M and I(K) would be almost constant.
But this is not a drawback since the proposed ZP-ZJ systems are spe-
cially suitable for channels whose order L is large, as compared to
M , so that the cost of sending redundant data is not negligible, thus
calling for reduced-redundancy solutions.

If on one hand we need to use as much redundancy as possible
in order to achieve lower probability of error or MSE of symbols
(as described in Corollary 1), on the other hand we must reduce the
transmitted redundancy to save bandwidth, which is paramount in
high data-rate systems, and maybe to increase the average mutual
information between transmitted and estimated symbols. In fact, in
order to take both effects (performance and bandwidth usage) into
account, one should consider throughput as figure of merit.

We shall assume that

Throughput , brc
M

M + K
(1 − BLER)fs bps, (21)

in which b denotes the number of bits required to represent one con-
stellation symbol, rc denotes the code rate assuming the protection
of channel coding, K denotes the amount of redundancy, fs denotes
the sampling frequency, and BLER stands for block-error rate [14].

As one can see, throughput is also a function of the bit-error
protection that is implemented at higher layers of a given commu-
nication protocol, entailing a sort of cross-layer design. Section 4
shows some setups where the proposed reduced-redundancy DFE
outperforms the traditional ZP DFE4 with respect to the throughput
performance.

4. SIMULATION RESULTS

The aim of this section is to assess the performance of the proposed
DFE with reduced redundancy through numerical examples. We
consider the transmission of 50, 000 data blocks containing M = 8
16-QAM symbols, which means that b = 4 (see (21)). In order to
generate each data block, we produce 16 random bits that, after pass-
ing through a convolutional channel-coding process with code rate
rc = 1/2, are transformed into 32 bits, which are mapped into 8
16-QAM symbols. The channel coding has constraint length 7 and

octal generators g0 , [133] and g1 , [165] [9, 10]. We assume
that the sampling frequency is fs = 400 MHz. In order to compute
the BLER, we assume that a data block is discarded when at least
one of the original bits is incorrectly decoded at the receiver end.

We consider the following channel models [13]: Channel A,
whose transfer function is 0.1659 + 0.3045z−1 − 0.1159z−2 −
0.0733z−3 − 0.0015z−4; Channel B, whose zeros are 0.999,
−0.999, 0.7j, −0.7j, and −0.4j; and Channel C, whose zeros

4In this work, the traditional ZP DFE can be seen as a particular type of
the proposed ZP-ZJ DFE for K = L (full-redundancy). Hence, the proposed
ZP-ZJ DFE extends the standard ZP-based DFE systems [4].

are 0.8, −0.8, 0.5j, −0.5j, and −0.8j. In the case of Channel A, the
number of redundant elements is such that K ∈ {2, 3, 4}, whereas
for Channels B and C we have K ∈ {3, 4, 5}.

Table 1 contains the average mutual information between trans-

mitted and estimated symbols, I(K), for Channels A, B, and C, and
for two distinct SNR values, namely 10 dB and 20 dB. The boldface

numbers illustrate the best values, thus showing that I(K) is not a

monotone function of K. Indeed, the best values of I(K) depend
on both the channel model and noise level.

Fig. 3 depicts the obtained results. Figs. 3(a), (b), and (c) con-
tain the uncoded bit-error rate (BER) results, i.e., the BER computed
before the channel-decoding process. In addition, Figs. 3(d), (e),
and (f) contain the throughput results. There are four curves in these
figures which describe the performance of the following systems: (i)
ZP-ZJ DFE with K = L − 2 (minimum-redundancy), (ii) ZP-ZJ
DFE with K = L − 1 (reduced-redundancy), (iii) ZP DFE with
K = L (full-redundancy), and (iv) ZP DFE with K = L (full-
redundancy) with no error propagation, in which the exact symbols
are fed back. This last system will be used as a benchmark for our
comparisons.

By observing Fig. 3(a), one can verify that the uncoded BER
of both reduced- and full-redundancy systems are quite close to
the benchmark transceiver for transmissions through Channel A.
Only the minimum-redundancy system does not perform well in
this particular case. Such uncoded-BER performances are re-
flected in the good throughput results obtained by the reduced-
redundancy transceiver in Fig. 3(d). Indeed, the ZP-ZJ DFE with
K = L − 1 = 3 can outperform the benchmark transceiver in up to
50 Mbps, whereas for SNRs larger than 22 dB, the ZP-ZJ DFE with
K = L − 2 = 2 can outperform the benchmark transceiver in up to
100 Mbps.

For Channel B, Fig. 3(b) shows that minimum- and reduced-
redundancy transceivers have closer uncoded-BER performances,
but both of them are not as close to the benchmark transceiver as
in the previous case of Channel A. By observing Fig. 3(e), we can
verify that the throughput performance of the traditional ZP DFE
is better than the proposed ZP-ZJ DFE with minimum and reduced
redundancies for SNRs smaller than 15 dB. Nevertheless, for typ-
ical SNR values around 20 dB, the gain from using the proposed
transceivers is remarkable, outperforming the benchmark system in
almost 100 Mbps (minimum-redundancy transceiver).

For Channel C, the error propagation is critical since the al-
ready known ZP DFE without error propagation achieves much
higher throughputs than the other transceivers for SNRs smaller
than 16 dB, as depicted in Figs 3(c) and (f). In this low SNR
range, the proposed DFEs do not perform as good as the tradi-
tional full-redundancy DFE (K = 5). On the other hand, for
SNRs larger than 20 dB (commonly found in practical systems),
the proposed reduced-redundancy DFE (K = 4) can outperform
the benchmark transceiver in up to 40 Mbps, whereas the proposed
minimum-redundancy DFE (K = 3) can outperform the benchmark
transceiver in up to 85 Mbps.

5. CONCLUDING REMARKS

In this work we proposed block-based ZP-ZJ transceivers with
decision-feedback equalization. These transceivers allowed the
tradeoff between transmission-error performance and data through-
put, enabling the optimization of the spectral resources in broadband
transmissions. This was possible by choosing the amount of redun-
dancy ranging from the minimum to the channel order, which is
usually employed. Some tools to analyze the transceivers were pro-
posed based on the resulting MSE of symbols, mutual information
between transmitted and estimated symbols, and error probability of
symbols.
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Fig. 3. Uncoded BER × SNR [dB] for (a), (b), and (c); Throughput [Mbps] × SNR [dB] for (d), (e), and (f). Figures (a) and (d) are associated
with Channel A, while (b) and (e) are associated with Channel B, and (c) and (f) are associated with Channel C.

The main conclusion from this work is that, for ZP-ZJ-based
DFE transceivers, it is possible to increase the data throughput for a
certain level of SNR at the receiver, without affecting the system per-
formance, as confirmed by the simulation results. These are prelim-
inary results from investigations that are in progress. An interesting
future research direction is the development of efficient algorithms
to implement the proposed optimal solutions.
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