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ABSTRACT

CoSaMP and Subspace-Pursuit (SP) are two recovery algo-

rithms that find the sparsest representation for a given signal

under a given dictionary in the presence of noise. These two

methods were conceived in the context of the synthesis sparse

representation modeling. The cosparse analysis model is a

recent construction that stands as an interesting alternative to

the synthesis approach. This new model characterizes signals

by the space they are orthogonal to. Despite the similarity be-

tween the two, the cosparse analysis model is markedly differ-

ent from the synthesis one. In this paper we propose analysis

versions of the CoSaMP and the SP algorithms, and demon-

strate their performance for the compressed sensing problem.

Index Terms— Sparse representations, Compressed

Sensing, Synthesis, Analysis, CoSaMP, Subspace-Pursuit.

1. INTRODUCTION

In many signal and image processing applications we en-

counter the following problem: recovering an original signal

x ∈ R
d from a set of noisy measurements

y = Mx+ e, (1.1)

where M ∈ R
m×d is a known linear operator and e ∈ R

d

is an additive bounded noise, i.e., ‖e‖22 ≤ ǫ2. In many cases

m < d and thus (1.1) has infinite number of solutions. One

such example is the problem of compressed sensing where

M is the measurement matrix. Other examples include signal

interpolation and inpainting. Thus, we should rely on priors

that we may have on x, in order to be able to recover the

signal.

A popular and very effective prior is one that is based on

sparsity. This assumption leads to two possible models, the

synthesis and the analysis models [1]. The synthesis model,

which received great attention in the past decade, assumes

that x has a k-sparse representation α under a given dictio-

nary D ∈ R
d×n [2]. In other words, there exists a vector

α ∈ R
n such that x = Dα and ‖α‖0 = k, i.e., α has k
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non-zero elements. Having the synthesis constraint we can

recover x = Dα by solving

α̂ℓ0 = argmin ‖α‖0 s.t. ‖y −MDα‖2 ≤ ǫ. (1.2)

Since solving (1.2) is an NP-hard problem [2], approximation

techniques are required for recovering x. One strategy is by

using relaxation, replacing the ℓ0 with ℓ1 norm, resulting with

the ℓ1-synthesis problem

α̂ℓ1 = argmin ‖α‖1 s.t. ‖y −MDα‖2 ≤ ǫ. (1.3)

Another option for approximating (1.2) is using a greedy

strategy. Two recently introduced methods that use this strat-

egy are CoSaMP [3] and subspace pursuit (SP) [4], both

described in algorithm 1. In the algorithm supp(·,K) returns

the set of K largest elements, and the subscript T denotes

taking the elements (columns) in places corresponding to T
in a vector (a matrix).

For a unitary D, a vector x with a k-sparse representation

α and x̂ℓ1 = Dα̂ℓ1 it was shown that if δ2k < δℓ1 then

‖x̂ℓ1 − x‖2 ≤ cℓ1ǫ, (1.4)

implying a stable recovery, where δ2k is the constant of the

restricted isometry property (RIP) of M for 2k sparse sig-

nals, and cℓ1 (≥
√
2) and δℓ1 (≃ 0.4652) are constants [5, 6].

CoSaMP and SP were the first greedy methods shown to have

recovery guarantees in the form of (1.4) assuming δ4k <
δCoSaMP and δ3k < δSP where δ3k and δ4k are the constants of the

RIP of M for 3k and 4k sparse signals respectively, and δCoSaMP

and δSP are reference constants [3, 4]. Following these results,

the iterative hard thresholding (IHT) [7] and hard threshold-

ing pursuit (HTP) [8] were shown to have similar reconstruc-

tion guarantees under similar conditions. The above were ex-

tended also for incoherent redundant dictionaries [9].

In the above results no dependencies were allowed in the

dictionary D. Candès et. al.[10] considered

x̂A−ℓ1 = argmin
x̃

‖D∗x̃‖1 s.t. ‖y −Mx̃‖2 ≤ ǫ, (1.5)

with the assumptions that x has a k-sparse representation un-

der a tight frame D and M has a D-RIP, an extension of the

RIP for the case that D is non-unitary, with δ7k ≤ 0.6. We
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Algorithm 1 Subspace Pursuit (SP) and CoSaMP

Require: k,M,D,y, a where y = Mx + e and x = Dα,

k is the cardinality of α and e is the additive noise. a = 1
(SP), a = 2 (CoSaMP).

Result: x̂CoSaMP or x̂SP: k-sparse approximation of x.

Initialize the support T 0 = ∅, the residual y0
r = y and set

t = 0.

while halting criterion is not satisfied do

t = t+ 1.

Find new support elements:

T∆ = supp(D∗M∗yt−1
r , ak).

Update the support: T̃ t = T t−1 ∪ T∆.

Compute a temporal estimate: αp = (MDT̃ t)†y.

Prune small entries: T t = supp(αp, k).
Calculate a new estimate: x̂t

CoSaMP
= DT t(αp)T t for

CoSaMP, and x̂t
SP
= D(MDT t)†y for SP.

Update the residual: yt
r = y − Mx̂t

CoSaMP
for CoSaMP,

and yt
r = y −Mx̂t

SP
for SP.

end while

Form final solution x̂CoSaMP = x̂t
CoSaMP

for CoSaMP and x̂SP =
x̂t

SP
for SP.

say that a matrix M has a D-RIP with a constant δk if for any

signal x̃ that has a k-sparse representation under D

(1− δk) ‖x̃‖22 ≤ ‖Mx̃‖22 ≤ (1 + δk) ‖x̃‖22 . (1.6)

The authors in [10] showed that under the above assumptions

‖x̂A−ℓ1 − x‖2 ≤ c̃ℓ1ǫ+ ‖D∗x− [D∗x]k‖1/
√
k, (1.7)

where c̃ℓ1 is a constant and [·]k is a hard thresholding op-

erator that keeps the largest k elements and zeros the rest.

In other words, this result gives a reconstruction guaran-

tee for redundant dictionaries with linear dependencies at

the cost of limiting the family of signals to those for which

‖D∗x− [D∗x]k‖1 is small.

The minimization problem (1.7) is a special case of the

ℓ1-analysis minimization problem in which D∗ is replaced by

a general operator Ω ∈ R
p×d [1]. Similar to what we have in

the synthesis framework, the ℓ1-analysis is a relaxation strat-

egy for solving the analysis problem:

argmin
x̃

‖Ωx̃‖0 s.t. ‖y −Mx̃‖2 ≤ ǫ. (1.8)

Though similar to (1.2), the analysis problem implies another

sparsity model altogether [11]. In this model, instead of a

dictionary D with columns that synthesize the signal, we use

an operator Ω that analyzes the signal by checking which of

its rows are orthogonal to the signal. Instead of looking at

the non-zero elements of the representation of x under D, we

look at the zero coefficients of Ωx. Each zero element in Ωx

implies a subspace orthogonal to x. An example for Ω is the

two-dimensional finite difference operator, known also as the

Algorithm 2 Analysis Subspace Pursuit (ASP) and Analysis

CoSaMP (ACoSaMP)

Require: l,M,Ω,y, a where y = Mx + e, l is the cospar-

sity of x under Ω and e is the additive noise. a = 1
(ASP), a = 2l−p

l
(ACoSaMP).

Result: x̂ACoSaMP or x̂ASP: l-cosparse approximation of x.

Initialize the cosupport Λ0 = {i, 1 ≤ i ≤ p}, the residual

y0
r = y and set t = 0.

while halting criterion is not satisfied do

t = t+ 1.

Find new cosupport elements:

Λ∆ = cosupp(ΩM∗yt−1
r , al).

Update the cosupport: Λ̃t = Λt−1 ∩ Λ∆.

Compute a temporal estimate:

xp = argmin
x̃
‖y −Mx̃‖22 s.t. ΩΛ̃t x̃ = 0.

Enlarge cosupport: Λt = cosupp(Ωxp, l).
Calculate a new estimate: x̂t

ACoSaMP
= QΛtxp for

ACoSaMP, and x̂t
ASP

= argmin
x̃
‖y −Mx̃‖22 s.t.

ΩΛt x̃ = 0 for ASP.

Update the residual: yt
r = y −Mx̂t

ACoSaMP
for

ACoSaMP, and yt
r = y −Mx̂t

ASP
for ASP.

end while

Form final solution x̂ACoSaMP = x̂t
ACoSaMP

for ACoSaMP and

x̂ASP = x̂t
ASP

for ASP.

two dimensional total variation (2D-TV). More details about

the subspaces implied by this operator can be found in [1, 11].

A vector x̃ with l zero coefficients in Ωx̃ is denoted as an

l-cosparse vector and the set of indices of the corresponding

l rows in Ω as the cosupport set Λ. If ΩΛ, a sub-matrix of

Ω with rows that belong to Λ, has a full-rank then all vectors

with cosupport Λ belong to a subspace of dimension d− l.
As in the synthesis case, solving (1.8) is an NP-hard prob-

lem [11] and thus approximations are needed. One option is

using an ℓ1 relaxation. Another approach is using a greedy

strategy. The first algorithm to take this approach was greedy

analysis pursuit (GAP) [11, 12]. This algorithm starts with a

full cosupport and in each iteration removes one element from

it. Other two methods are analysis IHT (AIHT) and analysis

HTP (AHTP), which have been shown to have reconstruction

guarantees similar to the RIP-based guarantees of IHT and

HTP in the synthesis context [13, 14].

In this paper we present analysis versions for CoSaMP

and SP. We demonstrate their performance for inverse prob-

lems and more specifically for compressed sensing. Note that

in this paper we state a theoretical result that guarantees the

performance of these newly formed algorithms. The proofs

and more appear in [14].

Analysis CoSaMP (ACoSaMP) and analysis SP (ASP) are

presented in Section 2. In section 3 we repeat the experi-

ments in [11] presenting phase transition diagrams for these

techniques and a reconstruction of a high dimensional image

from few measurements. Section 4 concludes the paper.
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Stage Synthesis Analysis Explanation D = Ω = I

Choice of a a = 1 for SP

and 2 for

CoSaMP

a = 1 for ASP

and 2l−p
l

for

ACoSaMP

Since p > l, we have that 2l−p
l

< 1.

This implies that Λ∆ in ACoSAMP is

smaller (compared to ASP), leading to a

larger subspace implied by the

intersection set.

Both the synthesis and

analysis algorithms lead

to the same

support/cosupport.

Finding new

elements

Largest

elements in

D∗M∗yr

Smallest

elements in

ΩM∗yr

Synthesis: we focus on the non-zeros,

and thus take the largest elements.

Analysis: we focus on the zeros and thus

take the smallest elements.

Selecting the largest

elements for T∆ is the

same as selecting the

smallest elements for

Λ∆ = TC
∆ .

Updating the

(co)support

T t−1 ∪ T∆ Λt−1 ∩ Λ∆ Union of support sets is equivalent to

intersection of cosupport sets.

Λt−1∩Λ∆ = (T t−1)C∩
TC
∆ = T t−1 ∪ T∆.

Compute a

temporal

estimate

(MDT̃ t)†y minx̃ ‖y −Mx̃‖2
s.t. ΩΛ̃t x̃ = 0

(MDT̃ t)†y is the solution to

minx̃ ‖y −MDα̃‖2 s.t. α̃(T̃ t)C = 0
and α̃(T̃ t)C = 0 is parallel to ΩΛ̃t x̃ = 0.

IΛ̃t x̃ = x̃(T̃ t)C .

Pruning/

Enlarging

supp(αp, k) cosupp(Ωxp, l) Same argument as for finding new

elements.

supp(αp, k) =
supp(xp, k) =
cosupp(xp, l)

C .

New estimate

for SP/ASP

(MDT t)†y minx̃ ‖y −Mx̃‖2
s.t. ΩΛt x̃ = 0

Same argument as for computing the

temporal estimate.

IΛt x̃ = x̃T tC .

New estimate

for CoSaMP/

ACoSaMP

(αp)T t QΛtxp (αp)T t is a projection to the subspace of

k-sparse vectors supported on T t. Its

equivalence in the analysis model is

QΛtx which projects to the subspace of

l-cosparse vectors cosupported on Λt.

QΛtxp =
xp − (I(T t)C )

†I(T t)Cxp

= (xp)T t = (αp)T t .

Residual yt
r = y−Mx̂t yt

r = y −Mx̂t Same operation in both versions.

Table 1. Comparison between CoSaMP and SP and their analysis versions

2. NEW ANALYSIS ALGORITHMS

The proposed ACoSaMP and ASP are presented in algo-

rithm 2. QΛ = I − Ω
†
ΛΩΛ denotes the projection onto the

orthogonal complement of range(ΩT
Λ), I is the identity ma-

trix and cosupp(·, l) returns the set of l smallest elements. As

a stopping criteria one can look at the convergence rate or the

residual size.

To see the analogy between CoSaMP and SP and their

analysis versions, we consider the following: Given two co-

support sets Λ and Λ̃, where |Λ| = l (the size of Λ is l) and

|Λ̃| = l̃, it holds that |Λ ∩ Λ̃| ≥ l + l̃ − p. This implies that

for the case |Λ| = |Λ̃| = l we have l ≥ |Λ ∩ Λ̃| ≥ 2l − p. In

the synthesis case, the result of adding two k-sparse signals is

a signal with sparsity of at most 2k. However, in the analy-

sis case the result of adding two l-cosparse signals is a signal

with cosparsity of at least 2l − p. This implies that union of

support sets in the synthesis case is parallel to intersection of

cosupport sets in the analysis. Based on the above observa-

tions, Table 1 presents the analogy between the methods.

The last column of the table refers to the case D = Ω = I,

where ACoSaMP and ASP become the same as CoSaMP and

SP. In this case we have p = d, k = d− l, TC = Λ, T̃C = Λ̃,

QΛx = xT and T ∪ T̃ = Λ ∩ Λ̃. In this case the recov-

ery guarantees of CoSaMP and SP apply also for ACoSaMP

and ASP in a trivial way. Thus, it is tempting to assume that

ACoSaMP and ASP should have similar guarantees given that

the Ω-RIP constant, the equivalent property of the D-RIP [10]

in the analysis case, is small. We say that a matrix M has an

Ω-RIP with a constant δl if for any l-cosparse signal x̃

(1− δl) ‖x̃‖22 ≤ ‖Mx̃‖22 ≤ (1 + δl) ‖x̃‖22 . (2.1)

This property alone is not enough for having recovery guaran-

tees. Though we have many similarities between the two ver-

sions of the algorithms, there is a vital difference in the case

where Ω 6= I. Given a vector z ∈ R
d, finding the support of

its closest (in the ℓ2-norm sense) k-sparse vector is done by

simply taking the support of the largest k elements. However,

in the analysis case finding an l-cosparse vector that is closest

to the original vector is a combinatorial problem. Choosing

the l smallest elements in Ωz is not necessarily the optimal

solution. For this reason we introduce the definition of near-

optimal projection [13].

Definition 2.1 Given a projection PΩ,l that projects to an l-
cosparse subspace, we say that it is near-optimal with a con-

stant Cl (≥ 1) if for any z ∈ R
d

‖z−PΩ,lz‖22 ≤ Cl min
x̃ l-cosparse

‖x̃− z‖22 . (2.2)
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The ACoSaMP and ASP uses the following projection:

P̃Ω,lz = QΛz where Λ = cosupp(Ω, l). (2.3)

In the general case, the near-optimality constant Cl for this

projection is bounded by the RIP constant of Ω∗. More de-

tails about bounding Cl can be found in [13]. We should note

here that this is not the only possible choice for a projection

and other cosupport selection methods can be used within the

ACoSaMP and ASP techniques.

Armed with the above definition we present the follow-

ing theorem that provides guarantees for ACoSaMP and ASP

with a = 2l−p
l

. More details can be found in [14].

Theorem 2.2 (Theorem 4.1 in [14]) Consider y = Mx+ e

where x is an l-cosparse vector. Apply either ACoSaMP or

ASP with a = 2l−p
l

, obtaining x̂t after t iterations. If

(1 + C̃)
(

1−
(

C̃ − (C̃ − 1)σ2
M

))

< 1, (2.4)

and δ4l−3p < δ2(C̃, σ2
M
), where C̃ = max(Cl, C2l−p) and

δ2(C̃, σ2
M
) is a constant guaranteed to be greater than zero

whenever (2.4) is satisfied, then after a finite number of itera-

tions t∗

‖x− x̂t∗‖2 ≤ c ‖e‖2 . (2.5)

implying that these algorithms lead to a stable recovery. The

constant c is a function of δ4l−3p, Cl, C2l−p and σ2
M

, where

σ2
M

is the largest singular value of M and Cl and C2l−p are

the constants of the near optimal projection PΩ,l.

Before we move to the next section we present a variation

of the ASP and ACoSaMP. In the algorithms’ steps we need to

solve the constrained optimization problem ‖y −Mx‖22 s.t.

‖ΩΛx‖22 = 0. In high dimensional problems this task is hard

to solve and we propose a relaxed version of the algorithms

that minimizes ‖y −Mx‖22 + ‖ΩΛx‖22 instead. We denote

these relaxed versions as relaxed ASP (RASP) and relaxed

CoSaMP (RACoSaMP).

3. EXPERIMENTS

In this section we repeat some of the experiments performed

in [11] for the noiseless case (e = 0) and some of the ex-

periments reported in [12] for the noisy case. We begin with

synthetic signals in the noiseless case. We test the perfor-

mance of ASP with a = 1 and ACoSaMP with a = 2l−p
l

and a = 1. The performance of RACoSaMP and RASP are

similar to those of ACoSaMP and ASP and thus omitted. We

compare the results to those of ℓ1-minimization [1], GAP [11]

and AHTP [13]. We use a random matrix M, where each en-

try in the matrix is drawn independently from the Gaussian

distribution, and a random tight frame Ω of size d = 200 and

p = 240.
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Fig. 1. Phase transitions for ACoSaMP with a = 2l−p
l

,

ACoSaMP with a = 1, ASP with a = 1, GAP, ℓ1-

minimization and AHTP.

We draw a phase transition diagram for each of the al-

gorithms. We test 20 different possible values of m and 20
different values of l and for each pair repeat the experiment

50 times. In each experiment we check whether we have a

perfect reconstruction. White cells in the diagram denote a

perfect reconstruction in all the experiments of the pair and

black cells denote total failure in the reconstruction. The val-

ues of m and l are selected according to the formula

m = δd l = d− ρm, (3.1)

where δ, the sampling rate, is the x-axis of the phase diagram

and ρ, the ratio between the cosparsity of the signal and the

number of measurements, is the y-axis.

Figure 1 presents the reconstruction results for ASP with

a = 1 and ACoSaMP with a = 1 and 2l−p
l

. As a reference

we present also the results of the other algorithms. It should

be observed that ACoSaMP behaves better with a = 1 than

with a = 2l−p
l

. Compared to the other algorithms, the recon-

struction results of the proposed algorithms with α = 1 are

better than those of ℓ1-minimization and AHTP, and compet-

itive to those of GAP. Note that the proposed analysis algo-

rithms are effective especially when l is close to d, leading to

a non-empty intersection in the cosupport update stage.

We turn now to test the methods for a high dimensional

signal. We use RASP and RACoSaMP for the reconstruction

of the Shepp-Logan phantom from few number of measure-

ments. The sampling operator is a two dimensional Fourier

transform that measures only a certain number of radial lines

from the Fourier transform and the cosparse operator is the

2D-TV. The phantom image, its differences image and an

example of 22 sampled radial lines are presented in Fig. 2

(a) and (b). Using RACoSaMP/RASP we get a perfect re-

construction using only 15/12 radial lines, i.e., only m =
3782/3032 measurements out of d = 65536 which is less
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(a) (b) (c)

Fig. 2. Shepp-Logan phantom image (top left), 22 sampled

radial lines (bottom left), Location of non zero elements in the

difference map (middle), Noisy phantom with SNR =20dB
(top right) and recovered image (bottom right).

than 5.77%/4.63% of the data in the original image. The al-

gorithms require less than 20 iterations for getting this perfect

recovery.

Exploring the noisy case, we perform the reconstruction

using RASP of a noisy measurement of the phantom with 22
radial lines and signal to noise ratio (SNR) of 20. Figure 2

(c) presents the result of applying inverse Fourier transform

on the measurements, and its reconstruction result. Note that

for the minimization process we use the conjugate gradient

algorithm, and in each iteration we take only the real part of

the result and crop the values of the resulted image to be in the

range of [0, 1]. We get a peak SNR (PSNR) of 36.5dB. We

should note that in a similar setting GAPN gives a comparable

result with 35.5dB [12].

4. CONCLUSION

In this work we have presented two novel algorithms for the

analysis model, ACoSaMP and ASP. We have demonstrated

their empirical performance showing competitive recovery re-

sults compared to other methods. ACoSaMP and ASP are the

parallel to CoSaMP and SP and the work in [14] shows that

they have similar theoretical recovery guarantees.
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