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ABSTRACT

We show that to lower the sampling rate in a spread spectrum

communication system using Direct Sequence Spread Spec-

trum (DSSS), compressive signal processing can be applied

to demodulate the received signal. This may lead to a de-

crease in the power consumption or the manufacturing price

of wireless receivers using spread spectrum technology. The

main novelty of this paper is the discovery that in spread spec-

trum systems it is possible to apply compressive sensing with

a much simpler hardware architecture than in other systems,

making the implementation both simpler and more energy ef-

ficient. Our theoretical work is exemplified with a numerical

experiment using the IEEE 802.15.4 standard’s 2.4GHz band
specification. The numerical results support our theoretical

findings and indicate that compressive sensing may be used

successfully in spread spectrum communication systems. The

results obtained here may also be applicable in other spread

spectrum technologies, such as Code Division Multiple Ac-

cess (CDMA) systems.

Index Terms— Direct Sequence Spread Spectrum, Com-

pressive Sensing, Compressive Signal Processing

1. INTRODUCTION

The concept of compressive sensing [1, 2] is attracting

more and more attention in the signal processing commu-

nity. Where the classical Shannon-Nyquist sampling theorem

requires a signal to be sampled at twice its signal bandwidth,

compressive sensing samples the signal at its information

rate, which may be much lower. Compressive sensing is

used to reconstruct a signal to a full Nyquist rate represen-

tation, but if only inference about information in the signal

is desired, compressive signal processing is better suited

[3]. Compressive signal processing is used when inference

about information in a signal is of interest, rather than the

reconstruction of the signal itself. Compressive sensing and

compressive signal processing samples the signal using a

sampling scheme with typically a randomized structure and

then exploits sparsity in the signal to enable subsampling.

This work is supported by The Danish Council for Strategic Research
under grant number 09-067056.

In DSSS systems the sparsity is in the selection of a code

used for transmission of a given data sequence. In this work

we show how compressive signal processing may be applied

to a spread spectrum receiver to lower the sampling rate at

the receiver. This may lower the overall energy consump-

tion of the device and/or lower the price of the Analog to

Digital Converter (ADC). To exemplify this consider the fol-

lowing: This work is based on a signal model used in the

IEEE 802.15.4 standard [4], in which a baseband signal with

a Nyquist frequency of 200kHz must be sampled. To show

the benefit of lowering the sampling rate, we compare two

ADCs from Analog Devices1: The AD7819 and the AD7813.

The AD7819 is an 8-bit ADC with a maximum throughput of

200 kilosamples per second, whereas the AD7813 is an 8- or

10-bit ADC with a maximum throughput of 400 kilosamples

per second. We are aware that 400 kilosamples per second is

the Nyquist rate of the system and the sampling rate should

be higher than this to comply with the Shannon-Nyquist sam-

pling theorem. However, we use these two ADCs as they

are almost identical in every aspect except for the sampling

rate, making them perfect for comparison. In present IEEE

802.15.4 compliant receivers, an ADC similar to the AD7813

must be used to comply with Shannon-Nyquist, but if com-

pressive signal processing is able to lower the sampling rate

by a factor of two, the AD7819 may be used instead. These

two particular ADCs use the same amount of power so there

are no energy savings, but where the AD7813 costs 2.98$,
the AD7819 only costs 2.29$.

Previous work has studied the use of compressive sens-

ing in Ultra-Wideband (UWB) systems for channel estima-

tion where the sparsity of the signal lies in the time domain

[5, 6]. Some researchers have studied the use of compres-

sive sensing for spread spectrum communication systems [7].

However, this work is mainly theoretical and relies on sec-

ond order Reed-Muller codes, which would be difficult to im-

plement in hardware. A more practical approach is given in

[8] where compressive sensing is used to decrease the sam-

pling rate of a GPS receiver by exploiting sparsity in the num-

ber of possible signal components at the receiver. However,

this approach also suffers from a complicated hardware im-

1http://www.analog.com
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plementation. In both works the receiver must use compli-

cated hardware filters, which may make their implementation

very difficult, considering the impact of hardware filters on

compressive sensing performance [9]. In this work we ap-

ply compressive signal processing to a general DSSS system.

We show that in a spread spectrum system it is possible to

use simply a repeated version of the matched filter used in

classic receivers instead of using a complicated filter structure

to acquire random measurements. This greatly simplifies the

implementation and makes compressive sensing feasible for

implementation in spread spectrumwireless receiver systems.

Our approach is not limited to DSSS but may also be applied

in other spread spectrum technologies, such as CDMA.

One major obstacle in applying compressive sensing to

any wireless system is the presence of noise folding, which

occurs because the noise is not measurement noise, but noise

added before measuring the signal. This severely impacts the

receiver performance, which is also evident in our numerical

experiments. We discuss how to mitigate this in Section 6.

In the following we first define classic transmitter and re-

ceiver structures in Sections 2 and 3, respectively. Then we

show how the classic receiver structure must be modified to

incorporate compressive signal processing in Section 4. Our

theoretical work is exemplified with a numerical experiment

using the IEEE 802.15.4 standard in Section 5 followed by a

discussion and conclusion in Section 6.

2. TRANSMITTER STRUCTURE

In both the transmitter and the receiver structure we treat the

signal symbol-by-symbol,where each symbolmay be a single

bit of information or a block of bits. Let bk ∈ {±1}N×1 be

a binary vector, signifying the kth symbol to be transmitted

and consisting of N information bits. Now define a binary

pseudo-random noise (PRN) sequence as ck ∈ {±1}C×1.

These two binary vectors are the discrete equivalents of an

information signal and a PRN signal, bk(t) and ck(t), respec-
tively as shown in Fig. 1 and are defined as:

bk(t) =

N−1
∑

n=0

bk[n]rect

(

t− nTb

Tb

)

, 0 ≤ t < NTb, (1)

ck(t) =

C−1
∑

c=0

ck[c]rect

(

t− cTc

Tc

)

, 0 ≤ t < CTc, (2)

where Tb and Tc are the bit and chip duration, respectively,

andNTb = CTc. We define:

rect(t) =
{

1 if 0 ≤ t < 1,
0 otherwise.

(3)

When multiplied, they form the spread spectrum data signal,

dk(t) = bk(t)ck(t), 0 ≤ t < NTb.

The notation used in the above may in some cases be

simplified, as the choice of a PRN sequence might be imple-

mented as a mapping from one bit or a block of bits directly to

a given sequence of chips, as done in e.g. IEEE 802.15.4 [4].

In the following, the signal model we define is based on the

IEEE 802.15.4 standard’s 2.4 GHz band specification. This

means the encoding using DSSS may be written as a matrix-

vector product, withM = 2N possible data signals:

dk(t) = Ψ(t)αk, where (4)

Ψ(t) =











d1(t)
d2(t)
...

dM (t)











T

, 0 ≤ t < NTb, (5)

whereΨ(t) is a dictionary of possible data signals and αk ∈
{0, 1}M×1 is a sparse vector with only one non-zero entry,

namely the entry that selects a given PRN sequence from the

dictionary. It may also be considered a symbol vector as it

corresponds to the kth symbol being transmitted. The spar-

sity of αk is what enables us to use compressive sensing for

demodulation. The sparsity of the signal lies in which PRN

sequence is chosen for transmission.

The IEEE 802.15.4 2.4 GHz band specification is based

on QPSK and therefore the output sequence is split up, so

that even-indexed chips in dk(t) are transmitted in the in-

phase path and odd-indexed chips in the quadrature-phase

path. In the following we only state the equations for the in-

phase path, but similar expressions may be derived for the

quadrature-phase part. The resulting data signals are then

used to modulate some pulse shape function, g(t):

sIk(t) = ΨI(t)αk, where (6)

ΨI(t) =

















∑

c∈S

d1(t)g (t− cTc)
∑

c∈S

d2(t)g (t− cTc)

...
∑

c∈S

dM (t)g (t− cTc)

















T

, S = {0, 2, . . . , C} (7)

Here the dictionary matrix has been recast into an in-phase

version, with pulse shape function included. Notice that g(t)
here and as depicted in Fig. 1 is assumed to be a half-sine

pulse, which is the pulse shaping function used in IEEE

802.15.4. This pulse shape has limited support in the time

domain, which is not true for e.g. a raised cosine pulse shape.

The equations in this work are defined for the half-sine pulse

shape, but are easily changed to apply to other pulse shape

functions.

3. CLASSIC RECEIVER STRUCTURE

Before introducing our compressive sensing receiver struc-

ture, we first define a classic Nyquist sampling receiver struc-

ture. At the receiver, the received signal is:

rk(t) = sk(t) + n(t), (8)
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Fig. 1. Transmitter and receiver structure for QPSK modulation/demodulation. The items drawn using dotted lines are hardware

components that must be modified to enable compressive sensing.

where n(t) is additive white Gaussian noise.
The in-phase and quadrature-phase analog signals are

sampled according to the chip rate using a matched filter to

the pulse shape used at the transmitter and an ADC. Here,

we assume a coherent receiver with perfect synchronization,

performed prior to data decoding using e.g. a pilot sequence.

The sampling may be represented using a measurement ma-

trix,Θ1(t):

yIk[ℓ] =

∫ (ℓ+1)Tc

ℓTc

θℓ(t)r
I
k(t)dt, where (9)

Θ1(t) =











θ0(t)
θ1(t)
...

θC−1(t)











,
θi(t) = g(t− iTc),
0 ≤ t < CTc

(10)

The measurement matrix is denoted Θ1 because it samples

every Tc/1, i.e. at Nyquist rate.
This means that for every received symbol 2C samples

must be taken for the in-phase and quadrature-phase signals in

total. These samples then form the received signal vectors, yI
k

and y
Q
k , which are used to demodulate the signal and find an

estimate of the transmitted symbol, represented as αk, using

a least squares estimator.

Due to the simple design of this signalling scheme and the

matched filter, it is possible to perform the demodulation pro-

cess as a least squares estimation with simple purely binary

versions of the analog dictionary and measurement matrices,

ΨI(t),ΨQ(t) andΘ1(t), respectively.

Define yk = yI
k + jyQ

k and define M signal candidates

as sm = Θ1

(

ΨI
αm + jΨQ

αm

)

, where Θ1 = I is now

simply the C× C identity matrix and ΨI ∈ {±1}C×M and

ΨQ ∈ {±1}C×M are the discrete in-phase and quadrature-

phase dictionary matrices with each entry signifying either a

positive (1) or negative (−1) pulse in the analog versions of

the dictionary matrices. With these definitions in order the

least squares estimate can be found as:

α̃k,idx = argmin
m

(

yk − sm

)H(

yk − sm

)

(11)

where (·)H denotes Hermitian transpose, α̃k,idx is the estimate

of the index in the αk vector which is non-zero, i.e. the index

corresponding to the symbol that has been transmitted.

4. COMPRESSIVE SENSING RECEIVER

STRUCTURE

In hardware compressive sensing sampling structures, such

as the Random Demodulator [10], a PRN sequence is mixed

with the received signal followed by low-pass filtering. Due

to the presence of a PRN sequence in a spread spectrum trans-

mitter, which spreads the data signal, a compressive sensing-

enabled receiver may merely use a repeated version of its

matched filter, subsample the received signal and still demod-

ulate the information. Before sampling, the matched filter

must be modified to contain not only a single chip pulse shape

but as many chip pulse shapes as shall be contained per sam-

ple. This received signal vector may then be written as:

yI
k[ℓ] =

∫ (ℓ+1)Tc/κ

ℓTc/κ

θℓ(t)r
I
k(t)dt, where (12)

Θ1/κ(t) =











θ0(t)
θ1(t)
...

θL−1(t)











,
θj(t) =

(j+1)/κ
∑

c=j/κ

g(t− cTc),

0 ≤ t ≤ CTc

(13)

Here each value of ℓ = 0, 1, . . . , L signifies a collection of

chips due to the subsampling where L = Cκ is the number of

samples taken per symbol. κ = L
C ∈ ]0, 1] is the undersam-

pling ratio in the compressive sensing system and signifies

the ratio between taken samples and Nyquist samples. In this

work we limit ourselves to scenarios where 1/κ is an integer
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number, i.e. only an integer number of Nyquist samples are

compressed together into one sample.

To verify that the use of an additional PRN sequence at the

receiver is unnecessary, we may look at the outcome of the

subsampling ADC in Fig. 1. Assuming a noise-free setting

(n(t) = 0), the outcome becomes:

yIk[ℓ] =

(ℓ+1)/κ
∑

c=ℓ/κ

∫ (c+1)Tc

cTc

rIk(t)pPRN(t)dt

=

(ℓ+1)/κ
∑

c=ℓ/κ

∫ (c+1)Tc

cTc

C/2−1
∑

c′=0

bk(t+ c′Tc)ck(t+ c′Tc)

· g(t− nTc)pPRN(t)dt (14)

Notice that the up and down-conversions have been assumed

perfect and pPRN(t) is a new PRN sequence, added at the re-

ceiver as is done in the Random Demodulator receiver struc-

ture [10]. The symbol c′ denotes a chip picked out in dk(t)
at the transmitter and used to avoid confusion with c, the
chips added together into a sample at the receiver. The spe-

cial indexing with Tc in connection with bk(t) and ck(t) is to
pick out the chips in the in-phase path only, similar to what

was done in (7). Because everything is multiplicative, it can

be seen that ck(t + nTc) and pPRN(t) are synchronized and

have the same chip rate, i.e. they may be viewed as a single

PRN sequence. It follows that the multiplication of a PRN

sequence at the receiver is unnecessary here.

Because we wish to demodulate a signal, which is equiv-

alent to a classification problem, it is not necessary for us to

reconstruct the full original signal as is done in compressive

sensing. Instead we use the recently introduced concept of

compressive signal processing [3] to perform classification in

the compressed domain. By classification, we mean to clas-

sify which of the signal candidates in the dictionary ΨI and

ΨQ has been transmitted. This does not require reconstruc-

tion of the signal itself and may therefore be done with less

computational complexity by using compressive signal pro-

cessing, rather than classic compressive sensing algorithms,

that reconstruct the full signal.

To demodulate the data at the receiver using the two sub-

sampled chip sequences, yI
k and y

Q
k , the classification rule

in (11) is used again with Θ1/κ ∈ {0, 1}L×C instead of

Θ1 ∈ {0, 1}C×C. In [3] a prewhitening matrix, W, is intro-

duced to counter noise coloring by the measurement matrix.

However, as our proposed measurement matrix, Θ1/κ, has

no overlapping rows, the noise remains white in our case.

This prewhitening matrix is therefore not necessary here, but

if e.g. a Gaussian or Bernoulli measurement matrix is used

instead, it must be included.

5. NUMERICAL RESULTS

To demonstrate the performance of our proposed receiver

structure, we have performed a numerical experiment in
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Fig. 2. The BER versus Eb/N0 for a classical receiver imple-

mentation using least squares compared to that of a compres-

sive sensing enabled receiver with κ = 0.5. The full black

curve signifies theoretical BER per Eb/N0 for coherentMFSK

and the dashed curve is theoretical BER per Eb/N0 for non-

coherent MFSK.

which we compare the Bit Error Rate (BER) of a classi-

cal receiver to that of a compressive sensing-enabled re-

ceiver. This is done for a range of Signal-to-Noise-Ratio

(SNR) levels. The system used for this experiment is our

MATLAB implementation of the physical layer of the IEEE

802.15.4 2450 MHz OQPSK radio band specification [4].

Each block of four bits is mapped into one of 32 binary

chip sequences, according to the mapping in [4]. The chip

sequence is then modulated using Offset Quadrature Phase

Shift Keying (OQPSK). This standard has been chosen due

to its widespread use, having been deployed already in many

applications around the world and because it is a known

standard to many scientists and engineers.

The experiment is repeated for a range of SNRs or more

specifically energy per bit per noise spectral density (Eb/N0).

The noise is added in a bandwidth corresponding to that of

the baseband signal, i.e. 2MHz [4]. Our experiment is con-

ducted by transmitting randomly generated data packets of

length 127 × 8 = 1016 bits each (the maximum size of an

IEEE 802.15.4 data packet). For each of the two tested meth-

ods and for each Eb/N0 level, bits are transmitted until at least

1000 bits have been received in error. All MATLAB code de-

veloped for this paper is published following the principle of

Reproducible Research [11] and is freely available at

http://www.sparsesampling.com/cspdsss2012.

To validate the implementation of the compressive sens-

ing framework, we have conducted a numerical experiment

in which we added a constant to the transmitted signal, rather

than additive white Gaussian noise (AWGN). The results for

both the classical least squares and the compressive sensing

implementation follow the expected results as found through

mathematical calculations, thereby indicating that the imple-

mentation performs as expected.

The result of the BER versus Eb/N0 experiment with

AWGN is shown in Fig. 2. Also shown is the theoretical
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BER versus Eb/N0 for coherent MFSK [12], numerically

evaluated:

Pb =
8

15

1√
2π

∫

∞

−∞

[

1− (1−Q(x))15
]

e−

(

x−

√

8
E

b
N0

)2

2 dx.

(15)

We have also included the theoretical curve for non-coherent

MFSK, as it is stated in the IEEE 802.15.4 standard [4]:

Pb =
8

15

1

16

16
∑

m=2

(−1)m
(

16
m

)

e4
E

b

N0
( 1

m
−1) (16)

The classical implementation does not follow the theoretical

bound exactly because the PRN sequences in [4] are not or-

thogonal and due to the short code lengths.

For κ = 0.5 the compressive sensing receiver performs

worse than a classical receiver by ≈ 4-5 dB, which is sup-

ported by the results on noise folding in [13].

6. DISCUSSION AND CONCLUSION

We have shown that compressive sensing enables subsam-

pling of a DSSS signal. This has been demonstrated by means

of IEEE 802.15.4 2.4GHz OQPSK signals, which we suc-

cessfully subsampled with half the Nyquist rate. This sub-

sampling may lead to a decrease in energy consumption or

a lowering of the manufacturing price. The penalty is the ex-

pected drop in performance due to noise folding. This penalty

has not been further treated in this work but in [13] the au-

thors suggest to incorporate the effect of quantization, which

should favor compressive sensing over a classical receiver as

a compressive sensing enabled receiver is able to quantize the

signal at a higher resolution, due to the lower sample rate.

An undersampling of κ = 0.5 is not a large undersam-

pling rate. This is mainly due to the effect of noise fold-

ing and because the IEEE 802.15.4 standard spread spectrum

codes are only 16 chips long in each channel (I and Q). For

more complex spread spectrum systems with longer chipping

sequences (and therefore more potential sparsity) and multi-

ple users and if quantization is included in the signal model,

we strongly believe there are cases where the sampling rate

may be decreased, while still attaining the same or better BER

performance than a classical receiver. This would make com-

pressive signal processing in such systems more attractive.

The main result of this paper is the observation that in

a spread spectrum receiver it is possible to use compressive

sensing without generating a PRN sequence and mixing it

with the received signal. This is possible because a spread

spectrum signal has already been spread by the transmitter.
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