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ABSTRACT

With telephony and hearing aids in mind, we present in this
research paper an I-channel Bark-scale filter bank approach
(I = 2D, D ∈ N) that employs a hypercomplex (i.e. multi-
hyperbolic) allpass filter as a filter bank. Efficient computa-
tion is assured by maximal orthogonal decomposition of the
selected multi-hyperbolic algebra. The main advantages of
this approach are: i) parallel processing of the subband sig-
nals, ii) designability of arbitrarily non-uniform filter banks,
and iii) robustness (= losslessness) as a result of the double
complementarity of (hypercomplex) allpass functions.

1. INTRODUCTION

For a long time, one approach to the design and implementa-
tion of two-channel IIR (analysis) filter banks has been based
on the concepts of i) two coupled real allpass functions [1, 2],
or ii) one complex allpass function by splitting its complex
output signal into its real and imaginary parts [3].

By using instead a hypercomplex 4-dimensional allpass
function, the original approach has been extended [4]: The
subband filtersHν (z), ν = 0, . . . , 3, of the filter bank are rep-
resented by the four real subsystems of a quaternion-valued
allpass function. This approach can be based on any hyper-
complex algebra of suitable dimension being related to the
number of filter bank channels [5].

Subsequently, we present a filter bank approach based on
d-dimensional multi-hyperbolic algebras, where the number
of channels of arbitrary bandwidth and allocation is given
by: I = d = 2D, D ∈ N. To this end, we recall the
properties of these algebras, introduce multi-hyperbolic all-
pass functions, specify the desired phase functions to perform
the allpass function design, and give a design example.

2. MULTI-HYPERBOLIC NUMBERS AND SYSTEMS

A 2-dimensional hyperbolic number a = aR + i1aI ∈ D
is composed of a real part aR ∈ R and an imaginary part
aI ∈ R where, in contrast to complex numbers C, the square
of the imaginary unit i1 is defined by [6]: i21 = 1. In general,
a multi-hyperbolic number DD, D ∈ N, of dimension d =

2D > 2 is derived from D by consecutive doubling (similar to
that described in [7]) subject to the squaring rule and commu-
tativity [6, 8, 9]: i2ν = 1, iµiν = iνiµ, ∀µ, ν = 1, . . . , 2D−1.

Hence, each multi-hyperbolic algebra DD is both com-
mutative and associative, but possesses particular zero divi-
sors a0 6= 0 and b0 6= 0 with zero product [7]: a0b0 = 0.
As a result of the latter property, each d-dimensional regular
multi-hyperbolic number a ∈ DD can be decomposed into
d orthogonal real-valued components ã = [ã0, . . . , ãd−1]T.
While a regular multiplication in DD obviously requires d2

real multiplications, the multiplication count is reduced to just
d when using the orthogonal representation ã [8].

Regular and maximally decomposed orthogonal represen-
tations of a ∈ DD are related by

a = Eã ∈ Rd and ã = Fa = E−1a ∈ Rd, (1)

where a = [a0, . . . , ad−1]T. The quadratic real, symmetric
and orthogonal DD basis-matrix is given by [6, 10]:

E =
1

2D

D⊗

δ=1

[
1 1
1 −1

]
= ET =

1

2D
E−1 =

1

2D
F. (2)

Here,
⊗D

δ=1 represents a D-fold KRONECKER-Product [11]
of the basis-matrix of algebra D. As shown in [10], the basis-
matrix E and its inverse F constitute a WALSH-HADAMARD
transform pair (WHT).

A d-dimensional multi-hyperbolic system is most effi-
ciently implemented by using the orthogonal system repre-
sentation [5, 8]

Y (z) = EH̃(z)F︸ ︷︷ ︸
H(z)

·X (z) = EH̃(z)E−1

︸ ︷︷ ︸
H(z)

·X (z) , (3)

where the d-dimensional input and output vectors, X (z) and
Y (z), comprise the z-transforms of the d real input and
output signals assigned to the d components of the multi-
hyperbolic input and output signals x(n), y(n) ∈ DD, and
the diagonal d × d transfer matrix H̃(z) is composed of the
real orthogonal subsystems H̃µ (z), µ = 0, . . . , d−1, derived
from the regular representation according to (1) and (2):
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h̃ (z) =




H̃0 (z)
...

H̃d−1 (z)


 = F ·




H0 (z)
...

Hd−1 (z)


 . (4)

A block diagram of the system implementation (3) is shown
in Fig. 1. Obviously, signal processing by the real orthog-
onal subsystems h̃µ(n) ←→ H̃µ (z), µ = 0, . . . , d − 1, is
performed separately in a parallel manner. As anticipated,
a d-dimensional multi-hyperbolic convolution requires just d
real convolutions as a result of d-fold (maximum) orthogonal
decomposition [8].

Fig. 1: System implementation based on orthogonal represen-
tation (3); h̃µ(n) ∈ R, µ = 0, . . . , d− 1,

3. MULTI-HYPERBOLIC ALLPASS FUNCTION

We devise a multi-hyperbolic allpass system (MHB-AP) as
an analysis filter bank for real input and real output signals.
To this end, we assign the real input signal x(n) ←→ X (z)
to the real part x0(n) of the hyperbolic MHB-AP input sig-
nal x(n) ∈ DD, while all d − 1 imaginary parts are set
to zero: Fig. 2. The real components yν(n) ←→ Yν (z),
ν = 0, . . . , d − 1, of the MHB-AP output signal y(n) ∈ DD
represent the I = d real subband signals of the I-channel
analysis filter bank.

Fig. 2: Hyperbolic allpass system based analysis filter bank

The transfer function of a DD MHB-AP function is given
by

H (z) = Z {h (n)} = Z {h0}︸ ︷︷ ︸
H0(z)

+

d−1∑

ν=1

Z {hν}︸ ︷︷ ︸
Hν(z)

iν (5)

with the allpass properties of power complementarity (loss-
lessness) and allpass-complementarity [2, 3]:

∣∣H
(
ejΩ
)∣∣ =

d−1∑

ν=0

|Hν

(
ejΩ
)
|2 =

∣∣∣∣∣
d−1∑

ν=0

Hν

(
ejΩ
)
∣∣∣∣∣ = 1, ∀Ω.

(6)

The latter property follows from the orthogonality of the DD
basis-matrix E as a result of the relation (7).

For efficient implementation, we again decompose the
MHB-AP system into the maximum number d of orthogo-
nal components in compliance with (3) and (4). Since the
MHB-AP input signal is real, relation (3) simplifies to:

h (z) =




H0 (z)
...

Hd−1 (z)


 = E · h̃ (z) = E ·




H̃0 (z)
...

H̃d−1 (z)




(7)
where the filter vector h (z) (1st column of transfer matrix
H(z), Fig. 2) comprises the real-coefficient filter bank trans-
fer functions, and h̃ (z) the respective real allpass functions.

Since x(n) = x0(n) = x(n) ∈ R according to Fig. 2, the
block diagram Fig. 1 likewise simplifies: The orthogonaliser
block is discarded, and all real allpass functions H̃µ (z) ←→
h̃µ (n), µ = 0, . . . , d− 1, are concurrently excited by the real
filter bank input signal x(n).

The transfer functions of the d real orthogonal allpass sub-
systems are given by [2]:

H̃µ (z) = zr
Ñµ
(
z−1
)

Ñµ (z)
, Ñµ (z) =

r∑

%=0

ãµ,%z
%, (8)

where µ = 0, . . . , d − 1 and r represents the common order
of the d allpass functions, with the resulting magnitude and
phase responses:
∣∣∣H̃µ

(
ejΩ
)∣∣∣ ≡ 1 ∀Ω, H̃µ

(
ejΩ
)

= e−jb̃µ(Ω), b̃µ (Ω) ∈ R.
(9)

The coefficients ãµ,% ∈ R of the orthogonal allpass subsys-
tems (8) are related to the regular multi-hyperbolic allpass
coefficients a% ∈ DD, % = 0, . . . , r, by (7). Hence, the fre-
quency responses Hν

(
ejΩ
)
, ν = 0, . . . , d − 1, of the regular

MHB-AP subsystems are derived from the phase responses
b̃µ (Ω), µ = 0, . . . , d − 1, of the real orthogonal allpass sys-
tems H̃µ (z) as follows:

h
(
ejΩ
)

=




H0

(
ejΩ
)

...
Hd−1

(
ejΩ
)


 = E ·




e−jb̃0(Ω)

...
e−jb̃d−1(Ω)


 (10)

=




d−1∑
µ=0

E0,µe−jb̃µ(Ω)

...
d−1∑
µ=0

Ed−1,µe−jb̃µ(Ω)



, (11)

where use is made of (7), (9) and (2).

4. ALLPASS SPECIFICATION AND DESIGN

For each magnitude response
∣∣Hν

(
ejΩ
)∣∣ of the d real filter

bank transfer functions (7) we define a passband region Dν ,
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Fig. 3: Illustration of filter bank magnitude specification

Dν ⊂ {Ω : 0 ≤ Ω ≤ π} being concurrently a stopband re-
gion of all other subsystems with the desired functions:

|Hd,ν (Ω)| = 1 ∩ |Hd,ξ (Ω)| = 0 ∀ξ 6= ν, Ω ∈ Dν , (12)

implying disjoint passbands Dν ∩ Dξ = ∅ ∀ν 6= ξ, and as-
suming ordered indexing: maxDν < minDν+1. Let ν =
0, . . . , d, since

∣∣H0

(
ejΩ
)∣∣ always represents a bandstop fil-

ter transfer function (passbands about Ω = 0, π) as a result
of allpass properties investigated in the appendix. Hence, we
split the associated zeroth passband into two regions: D0 :=
D0 ∩ Dd. Finally, all remaining transition bands T are given
by (cf. example depicted in Fig. 3):

T = [0, π] \ D, D =

d⋃

ν=0

Dν . (13)

Using (10) and (11) in conjunction with (9), the design
problem of the d real regular filter bank transfer functions
h (z) is mapped to the design of the real orthogonal allpass
functions h̃ (z), as defined in (7), by specifying the desired
orthogonal allpass function phase responses relative to that of
index µ = 0 (cf. Fig. 1):

b̃d,µ (Ω) = b̃d,0 (Ω) + ∆b̃d,µ (Ω) , µ = 1, . . . , d− 1, (14)

where H̃0 (z) = z−r is assumed linear phase: b̃d,0 (Ω) = rΩ.
As a result, all d − 1 real allpass functions can be devised
separately.

Next, we introduce the desired (regular) filter bank mag-
nitude responses (12) and the desired (orthogonal) phase re-
sponses (14) component-wise into (11)

|Hd,ν (Ω)| =

∣∣∣∣∣
d−1∑

µ=0

Eνmod d,µe−jb̃d,µ(Ω)

∣∣∣∣∣ =

∣∣∣e−jb̃d,0(Ω)
∣∣∣ ·
∣∣∣∣∣Eν,0 +

d−1∑

µ=1

Eνmod d,µe−j∆b̃d,µ(Ω)

∣∣∣∣∣ =

∣∣∣∣∣
1

d
+

d−1∑

µ=1

Eνmod d,µe−j∆b̃d,µ(Ω)

∣∣∣∣∣ = 1, Ω ∈ Dν . (15)

Note that the (regular) filter index is extended according to
ν := νmod d to cope with the passband splitting D0 :=

D0 ∩ Dd of H0 (z). Furthermore, we take into account that
all elements of the DD basis matrix E defined by (2) are rep-
resented by Eν,µ = ±1/d, ν, µ = 0, . . . , d − 1. Hence,
for each passband region Dν , ν = 0, . . . , d, the desired phase
differences (14) must meet the (sufficient) condition:

∆b̃d,µ (Ω) =

{
0, Eνmod d,µ = 1

d

±π, Eν,µ = − 1
d

, Ω ∈ Dν , (16)

in order to comply with (15) and, as a consequence, to meet
the requirements (12) for the (regular) transfer functions
Hν (z), ν = 1, . . . , d− 1. Note that with the minimum phase
difference definition of (16), the required common order r of
the allpass functions is minimal (cf. appendix).

Finally, for (14) we have to define suitable desired phase
differences for the d transition regions

Tν = {Ω : maxDν < Ω < minDν+1} , ν = 0, . . . , d− 1,
(17)

between any pair of contiguous passband regions. To this end,
we introduce a continuous yet arbitrary desired phase differ-
ence function in each transition region Tν :

∆b̃d,µ (Ω) = ∆b̃d,µ (Dν) + ∆2b̃d,µ (Dν) · fU

(
Ω− Ωu

Ωo − Ωu

)
,

(18)
where Ω ∈ Tν , fU (W ) ∈ R with non-negative slope and
fU (0) = 0, fU (1) = 1, Ωu = min Tν , Ωo = max Tν , µ, ν =
0, . . . , d− 1, and

∆2b̃d,µ (Dν) = ∆b̃d,µ (Dν+1)−∆b̃d,µ (Dν) . (19)

To obtain uniform slopes of the desired phase difference func-
tions (18) in the transition regions (17), we modify the desired
phase differences in the passband regionsDν . To this end, we
develop a recursive algorithm to replace (16).

The required minimum phase slopes (19) between any
two passband regions to comply with (16) and (2) are given
by:

∆2b̃d,µ (Dν) =

{
0,

∣∣E(ν+1) mod d,µ − Eν,µ
∣∣ = 0

±π,
∣∣E(ν+1) mod d,µ − Eν,µ

∣∣ = 2
d

,

(20)
where µ, ν = 0, . . . , d− 1. To unify the phase slopes (20) of
all orthogonal allpass functions H̃µ (z), µ = 1, . . . , d− 1, we
assign the two cases of (20) for each H̃µ (z) to two different
index sets according to:

Iν =
{
µ :
∣∣∣∆2b̃d,µ (Dν)

∣∣∣ > 0
}
, ν = 0, . . . , d− 1 (21)

and

Jν =
{
µ : ∆2b̃d,µ (Dν) = 0

}
= {1, . . . , d− 1} \Iν . (22)

Hence, for the real orthogonal allpass functions H̃µ (z) of in-
dex set (22) we have in compliance with (20):

∆b̃d,µ (Dν+1) = ∆b̃d,µ (Dν) , µ ∈ Jν , ν = 0, . . . , d−1,
(23)
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where, due to restriction (26), all desired phase differences
of D0 of all orthogonal allpass functions are given by:
∆b̃d,µ (D0) ≡ 0, µ = 1, . . . , d − 1. In contrast, compliant
with (20), the desired phase differences of the orthogonal all-
pass functions H̃µ (z), µ ∈ Iν , must change phase difference
versus the transition bands (17), Tν , by ±π as follows:

∆b̃d,µ (Dν+1) =

{
∆b̃d,µ (Dν) + π, ∆b̃min = 0

∆b̃d,µ (Dν)− π, ∆b̃min > 0
, (24)

where ∆b̃min = min
∀κ∈Iν

{
∆b̃d,κ (Dν)

}
. As a result, all associ-

ated desired phase differences have either a common positive
or a common negative slope. According to (24) the slope de-
pends on the minimum value of all desired phase differences
∆b̃d,µ (Dν), µ ∈ Iν , of the preceding passband region Dν .
Due to the allpass restriction (26), negative slopes of the de-
sired phase differences are always required, as soon as all as-
sociated orthogonal allpass functions H̃µ (z), µ ∈ Iν , have
accumulated positive desired phase differences up to the re-
spective preceding passband region Dν .

5. DESIGN EXAMPLE

We present the design of a 16-channel filter bank (sampling
rate: fs = 8kHz) based on the quadrihyperbolic algebra D4

of dimension d = 24 = 16, where the filter centre frequen-
cies are allocated compliant to the Bark-scale [12]: Fig. 4.
Channels ν = 1, . . . , 15 encompass the usable overall input
bandwidth ranging from 300Hz to 3.4kHz, while the bandstop
channel H0(z) is unused. The passbands widths of all pass-
band regions are set to zero, henceDν = Ωc,ν , ν = 1, . . . , 15.

Following the procedure presented in section 4, each of
the 15 desired phase functions (14) is separately approxi-
mated by an allpass function of order r = 80 using a least-
squares design routine [13]. The resulting phase differences
of the orthogonal allpass functions (being approx. linear
phase, since the reference branch is fixed to H̃0 (z) = z−r)
along with the associated regular filter bank transfer functions
are depicted in Fig. 5. From Fig. 5(a) it is readily recognised
that in all domains with changing phase differences, the
slopes of all changes are always either positive or negative, as
required by the algorithm. In Fig. 5(b) the unused bandstop
transfer function H0(z) is indicated by a dashed line.

6. CONCLUSION

For the first time, we have presented a general approach to
the design of one-stage I-channel hypercomplex analysis fil-
ter banks (AFB) for real input and output signals that are
based on multi-hyperbolic (MHB) algebras DD of dimension
d = 2D, D ∈ N, where I ≡ d. Conceptually, the I-channel
filter bank is implemented as a d-dimensional MHB allpass
system, where the real input signal is assigned to the real part

ν Ωc,ν fc,ν/Hz ν Ωc,ν fc,ν/Hz

1 0,0625 250 9 0,3425 1370
2 0,0875 350 10 0,4 1600
3 0,1125 450 11 0,4625 1850
4 0,1425 570 12 0,5375 2150
5 0,175 700 13 0,625 2500
6 0,21 840 14 0,725 2900
7 0,25 1000 15 0,85 3400
8 0,2925 1170

Fig. 4: Bark-scale centre frequencies Ωc, fc of passband
regions Dν of regular filter bank transfer functions Hν (z),
ν = 1, . . . , 15, for quadrihyperbolic filter bank; fs = 8kHz

of the MHB input signal, while all its imaginary parts are set
to zero, and the d = I components of the MHB output signal
are considered as the I real filter bank subband signals. As
a result of maximal orthogonal decomposition into d compo-
nents possible for all MHB algebras DD, the design and im-
plementation of an MHB allpass is most efficiently reduced
to the separate approximation and parallel realisation of just
d real allpass functions of the same order.

Further desirable features of the allpass based MHB fil-
ter bank are: i) The set of filter bank transfer functions is all-
pass and power complementary (robustness/losslessness), and
ii) the potential of arbitrary choice of centre frequencies and
bandwidth allocation of all d − 1 channels (with the excep-
tion of one bandstop channel with split passbands’ centre fre-
quencies at Ω = 0, π) overcoming the restrictions of allpass-
transformed uniform filter banks. As a consequence of all-
pass complementarity (6), the non-decimated AFB subband
signals are perfectly reconstructed to the original AFB input
signal by mere addition of all AFB subband signals. Finally,
the dual synthesis filter bank is readily derived from the AFB
by applying the transposition rules of real systems.

In our MHB filter bank approach the orders of all d par-
allel allpass functions are identical in contrast to well-known
filter bank designs based on coupled allpass functions [2, 3,
13] that require different orders. It should also be noted that
filter banks for complex input and output signals can likewise
efficiently be based on tessarine algebras CDD of dimension
d = 2D+1 [8, 9]. Here, in contrast to the reported MHB ap-
proach with real allpass functions, the (maximally possible)
d/2 orthogonal allpass functions are complex-valued.

More detailed investigations of the presented filter bank
approach to be reported in forthcoming papers will be related
to the following topics: i) Avoid a fixed linear phase refer-
ence allpass branch H̃0 (z), ii) design all real allpass functions
commonly or iteratively, iii) use and compare different allpass
function design algorithms, e.g. an equiripple or weighted
LMS approach for uniform stopband attenuation, iv) define
less order-consuming desired phase differences in the transi-
tion regions (17), and v) compare major properties (e.g. com-
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Fig. 5: Bark-scale quadrihyperbolic filter bank with uniform
slopes of phase differences; fs = fA = 8kHz, I = d = 16,
order of allpass function r = 80

plexity, signal delay and distortion) of the reported design ap-
proach with those of allpass-transformed complex-modulated
filter banks.

Appendix
The phase response of a real allpass function H̃ (z) (8), (9) of
order r has fixed values at Ω = 0, π [2]:

b̃ (0) = 0, b̃ (π) = rπ. (25)

Hence, the desired phase differences of all orthogonal allpass
functions H̃µ (z) of the common order r are restricted to:

∆b̃d,µ (0) = ∆b̃d,µ (π) = 0, µ = 0, . . . , d− 1. (26)

For the regular subsystem H0 (z) of the hyperbolic allpass
function (5) it follows from (10) in conjunction with (25):

∣∣H0

(
ej0
)∣∣ =

∣∣∣∣d ·
1

d
· ej0

∣∣∣∣ =
∣∣H0

(
ejπ
)∣∣ =

∣∣∣∣d ·
1

d
· e−jrπ

∣∣∣∣ = 1,

(27)
and for the remaining magnitude responses:
∣∣Hν

(
ej0
)∣∣ =

∣∣Hν

(
ejπ
)∣∣ = 0, ν = 1, . . . , d− 1. (28)

As a result, H0 (z) is constrained to a bandstop filter transfer
function, while all Hν (z), ν = 1, . . . , d− 1, can be specified
as bandpass filters.

An allpass phase response b̃ (Ω) is monotonically increas-
ing [2]. To meet this condition, the slope of b̃d,0 (Ω) in (14)
must be sufficiently great. This is controlled by the common
allpass order r, since H̃0 (z) = z−r : b̃d,0 (Ω) = rΩ.

7. REFERENCES

[1] P. A. Regalia, S. K. Mitra, P. P. Vaidyanathan, M. K. Renfors,
and Y. Neuvo, “Tree-structured complementary filter banks
using all-pass sections,” IEEE Transactions on Circuits and
Systems, vol. 34, no. 12, pp. 1470–1484, Dec. 1987.

[2] Phillip A. Regalia, Sanjit K. Mitra, and P. P. Vaidyanathan,
“The digital all-pass filter: A versatile signal processing build-
ing block,” Proceedings of the IEEE, vol. 76, no. 1, pp. 19–37,
Jan. 1988.

[3] P. P. Vaidyanathan, Philip A. Regalia, and Sanjit K. Mitra, “De-
sign of doubly-complementary IIR digital filters using a sin-
gle complex allpass filter, with multirate applications,” IEEE
Transactions on Circuits and Systems, vol. 34, no. 4, pp. 378–
388, Apr. 1987.

[4] Valentin Sercov, Alexander Petrovsky, and Dmitry Lushtyk,
“Digital hypercomplex all-pass filters: A novel filters bank
building block,” in Proc. 6th International Workshop on Sys-
tems, Signals and Image Processing (IWSSIP’99), Bratislava,
Slovakia, 1999, pp. 181–184.

[5] Daniel Alfsmann and Heinz G. Göckler, “Design of hypercom-
plex allpass-based paraunitary filter banks applying reduced bi-
quaternions,” in Proc. EUROCON 2005, Belgrade, Serbia &
Montenegro, 2005, pp. 92–95.

[6] Paul Fjelstad and Sorin G. Gal, “n-dimensional hyperbolic
complex numbers,” Advances in Applied Clifford Algebras,
vol. 8, no. 1, pp. 47–68, 1998.

[7] I. Kantor and A. Solodovnikov, Hypercomplex numbers,
Springer-Verlag, New York, 1989.

[8] Daniel Alfsmann, “On families of 2N -dimensional hypercom-
plex algebras suitable for digital signal processing,” in Proc.
EURASIP 14th European Signal Processing Conference (EU-
SIPCO 2006), Florence, Italy, 2006.

[9] Daniel Alfsmann and Heinz G. Göckler, “On hyperbolic com-
plex LTI digital systems,” in Proc. EURASIP 15th Euro-
pean Signal Processing Conference (EUSIPCO 2007), Poznań,
Poland, 2007, pp. 1322–1326.

[10] N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital
Signal Processing, Springer-Verlag, Berlin, 1975.

[11] G. Strang, Linear Algebra and its Applications, Academic
Press, London, 1976.

[12] H. Fastl and E. Zwicker, Psychoacoustics: Facts and Models,
Springer, Berlin, Heidelberg, 2007.

[13] M. Lang and T.I. Laakso, “Simple and robust method for the
design of allpass filters using least-squares phase error crite-
rion,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 41, no. 1, pp. 40–48, Jan.
1994.

523


