
LOW COMPLEXITY APPROXIMATE CYCLIC ADAPTIVE MATCHING PURSUIT

Alexandru Onose, Bogdan Dumitrescu

Department of Signal Processing

Tampere University of Technology

PO BOX 553, 33101, Tampere, Finland

e-mail: alexandru.onose@tut.fi, bogdan.dumitrescu@tut.fi

ABSTRACT

Based on the iterated cyclic adaptive matching pursuit algo-

rithm, we construct a low complexity approximate variant for

finding sparse solutions to systems of linear equations. We

employ a greedy neighbor permutation strategy coupled with

an approximate scalar product matrix to ensure that the com-

plexity of the algorithm remains low. The sparse solution is

cyclically updated improving the performance while the spar-

sity level is estimated online using the predictive least squares

criterion. The performance of the algorithm is similar to that

of the non approximate variants while the complexity can be

considerably lower.

Index Terms— matching pursuit, sparse filters, greedy

algorithm, channel identification

1. INTRODUCTION

Sparse approximation problems have arisen in recent years

from many practical application like compression, denoising

or array processing. Several algorithms [1, 2, 3] have been

proposed with applications to typical signal and image pro-

cessing tasks. We aim to present in this paper a low com-

plexity version of the iterated cyclic adaptive matching pur-

suit (ICAMP) [4] algorithm that employs a series of approx-

imations and adaptation steps to provide a lower complexity

without negatively influencing the estimation error.

Consider a typical FIR channel identification problem

where, at time t, the input u(t) and the output d(t) are mea-

sured. The goal is to estimate the true coefficients hj that

minimize the estimation error

e(t) = d(t)−
N−1∑

j=0

hju(t− j), (1)

where N is the filter length.

Work supported by Tekes FiDiPro – Finland Distinguished Professor

Programme and by GETA – Graduate School in Electronics, Telecommunica-

tions and Automation. B. Dumitrescu is also with Department of Automatic

Control and Computers, ”Politehnica” University of Bucharest, Romania.

Minimizing the estimation error at each time instance can

be transformed towards minimizing a least squares criterion

J(t) =

t∑

i=1

λt−i|e(i)|2, (2)

where 0 < λ ≤ 1 is a forgetting factor. Written in matrix

form, the criterion is equivalent to minimizing the norm of the

residual ||b−Ax||2; the solution vector x corresponds to the

estimated coefficients hj that result from the minimization of

(2). We consider the solution x to be sparse, henceforth it has

at most M ≪ N non zero coefficients. Moreover, the number

and the positions of the coefficients are a priori unknown. The

matrix A ∈ R
t×N is built with the input data, its i-th row

being equal to λ
t−i
2 α

(i)T where

α
(i) = [u(i), u(i− 1), . . . , u(i−N + 1)]

T
. (3)

The vector b ∈ R
t contains the weighted output data bi =

λ
t−i
2 d(i). We denote hereafter β(i) = d(i) and, for simplicity,

we drop the index (i) from α
(i) and β(i) when they refer to

the current available data at time t.

We develop an approximate variant of the ICAMP algo-

rithm by selectively storing the information about the input

data matrix A. The algorithm updates and uses only the scalar

products between the full matrix A and a set of columns from

A that are associated with the current solution support. When

a decision to modify the support is made, we delay the ac-

tual change by introducing a constant length buffer to temper

any rapid support variation. The scalar products associated

with the buffer are also updated and can contribute directly to

changes in the support. We propose two algorithms that use

a fixed respectively a variable upper sparsity bound and esti-

mate the sparsity level with the predictive least squares (PLS)

criterion.

The content of this paper is as follows: in section 2 we

present the proposed low complexity approximate algorithms;

a brief overview of the ICAMP algorithm and the PLS cri-

terion in conjunction with the approximate algorithms is in-

cluded in section 3; section 4 contains the results of our sim-

ulations proving the performance of the algorithms.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 2629

2. LOW COMPLEXITY APPROXIMATE

ALGORITHMS

We begin by briefly reviewing the classic matching pursuit

(MP) algorithm [5] and its adaptive counterpart, the adaptive

matching pursuit (AMP) [6]. Starting from AMP, we intro-

duce a series of approximations that provide lower complex-

ity which, used in conjunction with the iterated cyclic adap-

tive matching pursuit algorithm [4] coupled with a buffer that

mitigates fast changes in the solution support, form the basis

of our proposed low complexity iterated adaptive matching

pursuit algorithm.

The algorithm follows the MP column selection strategy

selecting one by one columns (named active columns) from

the matrix A based on their alignment with the residual. The

selection starts by finding the best column ak1
aligned with

output data vector representing the first residual b0 = b (the

solution x is null); the column ak1
is included in the active

column set A. The projection of the current residual b0 on

ak1
is then removed from b0, producing the new residual b1

used in the selection of the next active column. After i − 1
columns are selected, the search for the column aki

, best

aligned with the current residual bi−1, continues in the re-

maining column set I composed by columns not yet included

in A,

ki = argmax
l∈I

|aTl bi−1|
2

||al||2
. (4)

The new residual is computed by projecting bi−1 on aki
,

bi = bi−1 − xki
aki

, (5)

where the coefficient xki
represents the alignment of the col-

umn aki
with the residual bi−1,

xki
=

a
T
ki
bi−1

||aki
||2

. (6)

The selection continues until M columns are chosen.

The above equations are implemented using only the

scalar products Ψ = A
T
b between the input matrix and the

output vector b and Φ = A
T
A between the columns of the

matrix A. The norms of the columns from the matrix A are

stored separately in Θ to simplify the presentation, otherwise

they are present on the diagonal of Φ. Equation (5) can be

easily expressed using the scalar products by multiplying it

with A
T on the left.

Additionally, a neighbor search strategy is employed for

the column selection. Relying on the slow variation of the

channel, we reuse the selection order found at time t−1 when

we perform the search at time t. Thus, starting from the old

active set A we constrain the search for each new column po-

sition j between neighbor positions j and j+1 in the set. The

resulting permutations are performed only between neighbor

positions and produce the updated active set at current time t.

Changes in the composition of the active set A are achieved

by allowing all remaining inactive columns to compete for the

last position M .

At each time instance t, when new input vector α and

output data β are available, all the scalar products are updated

in place,

Φ1:N,1:N ← λΦ1:N,1:N +α1:Nα
T
1:N

Ψ1:N ← λΨ1:N + βα1:N

Θj ← λΘj + α2
j with j = 1 : N,

(7)

and the solution and column selection are revised.

Consider the true sparse solution having Lt ≪ N non

zero coefficients; by choosing M ≥ Lt small enough the

main computational burden is due to the update of the scalar

products Φ. They are however not all necessary when com-

puting the solution at a given time. In a stationary regime,

where the active set A composition does not change as new

samples are received, the only scalar products required are

the column norms Θ and the scalar products between the ac-

tive columns ak1:M
and the full matrix A. Thus, in the ideal

scenario where no support changes are made, storing and up-

dating only the partial scalar product matrix Φ̄ = A
T
ak1:M

instead of the whole Φ = A
T
A ensures that all the required

data are available.

When an inactive column akj
becomes active instead of

the old column akM
, the associated coefficient x

′

kj
can still be

computed precisely like in (6) using the stored column norms

Θ; it produces an updated residual

b
′

M = bM−1 − x
′

kj
akj

. (8)

Because the channel is slow varying, there are usually no sud-

den changes, either in the support or in the coefficient values.

Thus, when a coefficient becomes inactive it does so gradu-

ally until the associated column reaches the last position akM

in the active set A and is then replaced by the new column

akj
. If M > Lt, then we can assume that any coefficient xki

above the sparsity level Lt (i > Lt) is small since the true so-

lution contains all the relevant coefficients. When the support

changes, the coefficient x
′

kj
has a negligible influence in de-

creasing the residual and the scalar products associated with

(8) can be approximated by

A
T
b

′

M ≈ A
T
bM−1 (9)

This does not require any information regarding the unknown

scalar products A
T
akj

. When the new coefficient gradually

become significant, if the unknown scalar products A
T
akj

are far from their true values, the performance is negatively

influenced even leading to instability. To circumvent this we

propose to set AT
akj

to zero and allow a number of updates

to be performed before the column may be introduced into

the active set. For this purpose we use a buffer B of length

P (containing columns akM+1:M+P
) to delay the introduction

of any new column in A. The scalar products are updated

2630

for all the columns associated with B, hence diminishing the

approximation errors. Furthermore, since the scalar products

with the columns from the active set are computed exactly,

the errors introduced by the unknown scalar products after

the column is included inA on position i do not affect signif-

icantly the coefficients xk1:i
.

Thus, if the column akj
, selected to be introduced in the

active set A on position M , belongs to I \ B, it replaces the

last column akM+P
in B instead of being introduced directly

in the active set A. The associated scalar products are set to

zero and the solution is still computed with the old column

akM
. If akj

belongs to B, it is promoted one position in the

set, kj−1 ↔ kj . It becomes active replacing akM
in the ac-

tive set, kM ↔ kM+1, only when it is on the first position

in B. This ensures that a certain column is selected at least

P times before becoming active which, coupled with the up-

date of their associated scalar products as new samples are

received, reduces the approximation errors.

We present in Alg. 1 the algorithm that constructs the set

B and performs the neighbor permutations. We consider that

the elements in x, the columns in the matrix A and all the

associated scalar products are permuted according to the col-

umn selection order implicitly present in the active set A and

in the buffer B. Additionally, the partial matrix Φ̄ is stored

in the full matrix Φ to simplify the notations. Also, note that

the scalar products between the active columns (and columns

from B) and all the other columns have exact values and are

never set to zero (Alg. 1, step 1.3).

The complexity due to the scalar product update Φ is re-

duced from 3
2N

2 to 3N(M + P) − 3
2 (M + P)2. The scalar

product update complexity is decreased by a factor propor-

tional with 1
2

N
M+P

.

3. APPROXIMATE ITERATED CYCLIC ADAPTIVE

MATCHING PURSUIT

Selecting the column aki
and computing the solution coef-

ficient xki
like in the AMP algorithm decreases the residual

by the largest amount when the previously computed coeffi-

cients, xk1:i−1
, are kept fixed. To further minimize the resid-

ual, a cyclical update [7] is performed by optimizing one coef-

ficient at a time while keeping the rest i−1 coefficients fixed.

The coefficient xkj
, j ∈ {1, . . . , i} is updated by removing

the corresponding column akj
from the active set, hence pro-

ducing the residual

b
′

i = bi + xkj
akj

, (10)

and then reincluding it in the active set. The updated coeffi-

cient is

x
′

kj
=

a
T
kj
b

′

i

||akj
||2

= xkj
+ γ, (11)

Alg. 1 (Introduce the candidate column j in B, per-

form the necessary neighbor permutations).

1 if j > M + P (the column is not in buffer B)

1.1 Swap columns (and rows) M + P and j in Φ

Swap elements M + P and j in Ψ̃, x and Ψ

The information on row j in Φ is discarded

1.2 Set to zero the unknown scalar products for col-

umn M + P

ΦM+P+1:N,M+P = 0

1.3 Keep the known scalar products

ΦM+P,M+P = ΘM+P

Φ1:M+P−1,M+P = ΦT
M+P,1:M+P−1

2 if 1 < j ≤M + P (the column is in B or in A)

2.1 Swap columns (and rows) j − 1 and j in Φ

Swap elements j − 1 and j in Ψ̃, x and Ψ

where γ =
a
T
kj

bi

||akj
||2 . This produces a residual update similar

to (5),

bi ← b
′

i − (xkj
+ γ)akj

= bi − γakj

xkj
← x

′

kj
.

(12)

The cyclic update step, performed Nit times for all columns

considered by the solution, further minimizes the residual. All

the above updates can be expressed with the use of the scalar

products Ψ and the partial scalar products Φ̄ such that the ap-

proximate version of the ICAMP algorithm only requires the

approximation steps presented in section 2. The column se-

lection and coefficient estimation is presented in Alg. 2 while

the cyclic update is included in Alg. 3.

The true sparsity level Lt of the solution x can be esti-

mated with the use of information theoretic criteria [3, 4]. If

Lt is unknown, we can apply the relations presented so far to

find M , M ≥ Lt, columns ak1:M
that correspond to a M -

sparse solution x. Because the selection process introduces

an inherent column order, we assume that after enough data

are available the first selected positions correspond with high

probability to the true support of the solution. The threshold

M can be either fixed or can change such that it approaches

Lt +∆, where ∆ is a predefined constant ensuring that there

are enough candidates for estimating the sparsity level [4].

For clarity we present only the fixed version of the algorithm,

the variable one being rather straightforward. Note that for

the variable version, due to the changes of the threshold M ,

the buffer B needs to be adjusted such that its size is always

P . Thus, if M decreases, the last column from the active set

A will be moved to B while the last column in B is discarded.

If M increases, the first column from B moves to A and on

the last position in B a new (random) column is promoted.

The estimate L of the true sparsity level Lt is computed as

the point for which the predictive least squares (PLS) criterion

2631

Alg. 2 (Estimate the coefficient i).

1 if i < M

1.1 Update scalar product for next column

Ψ̃i+1 ← Ψ̃i+1 −Φi+1,1:i−1x1:i−1

1.2 Find best candidate column between neighbors

ki = argmaxl∈[i,i+1]
Ψ̃2

l

Θl

2 if i == M

2.1 Update remaining scalar products

Ψ̃M+1:N ← Ψ̃M+1:N−ΦM+1:N,1:M−1x1:M−1

2.2 Find best ki candidate column between all re-

maining columns

ki = argmaxl∈[M :N]
Ψ̃2

l

Θl

3 Permute necessary columns (Alg. 1)

4 xi =
Ψ̃i

Φi,i
(evaluate coefficient value)

5 Update scalar product considering new residual

Ψ̃1:i+1 ← Ψ̃1:i+1 − xiΦ1:i+1,i

Alg. 3 (Cyclic update of j coefficients).

1 for i = 1 : j (cyclically update each coefficient)

1.1 γ = Ψ̃i

Θi

1.2 xi ← xi + γ (update the coefficient)

1.3 Ψ̃1:Mi+1 ← Ψ̃1:Mi+1 − γΦ1:Mi+1,i

[8] attains its minimum. At time instance t, the PLS criterion

is

PLS
(t)
j =

t∑

i=0

λt−ie
(i)
j

2
, (13)

where e
(i)
j = β(i) − α

(i)T
k1:j

x̌j,k1:j
; the index (i) denotes the

time at which the data are considered, x̌
(i)
j,k1:j

contains the co-

efficients of the j-sparse solution. The PLS criterion can be

therefore computed recursively by

PLS
(t)
j = λ ·PLS

(t−1)
j + e

(t)
j

2
. (14)

The approximate ICAMP algorithm using the PLS crite-

rion is summarized in Alg. 4. The number of operations re-

quired by the column selection and coefficient computation

is 3N(M + P) −M2 + NM while the cyclic update adds
1
3NitM

3 + 4NitM
2 operation. The computation of the PLS

criterion is fast requiring only M2 operations.

4. SIMULATIONS

The performance of the algorithms was tested using a sparse

FIR channel identification problem (1) with N = 200 and

the true solutions having Lt = 5 non zero coefficients. The

channel non zero coefficients are described by

hj(t) = aj cos(2πfTst+ φj). (15)

Alg. 4 (Iterated cyclic adaptive matching pursuit with

PLS column selection, approximate version).

1 Update needed scalar products between columns of A

Φ1:N,1:M+P ← λΦ1:N,1:M+P +α1:Nα
T
1:M+P

Update scalar products Θ and Ψ like in (7)

Save copy of scalar products Ψ̃1:N = Ψ1:N

2 for i = 1 : M (select coefficients one by one)

2.1 Estimate coefficient i as in Alg. 2

2.2 for l = 1 : Nit (improve the j-sparse solution)

2.2.1 Update j = i coefficients as in Alg. 3

2.3 x̌i,1:i = x1:i (store current coefficients)

3 Estimate the support size L using PLS

4 Use the stored values x̌L,1:L for the coefficients

The coefficient positions j are chosen randomly, the ampli-

tude aj and the initial phase φj are uniformly distributed in

[0.05, 1] and [0, 2π]. The variation speed is given by the prod-

uct fTs. The filter is normed such that the average norm is

E{||hi||
2
2} = 1. The inputs d(t) are normally distributed ac-

cording to N (0, 1) and the outputs are corrupted by an ad-

ditive Gaussian noise with σ2 = 0.01. We measure the per-

formance of the algorithms in terms of the coefficient mean

square error

MSE(t) = E{||h− x||22}, (16)

where h contains the actual values of the coefficients and x

their estimates; 1000 test runs were used to estimate the MSE.

The tested algorithms are as follows: RLS, the standard

algorithm using the full filter of length N ; RLS-SP, the spar-

sity aware RLS algorithm with prior knowledge of the po-

sition and number of coefficients; GRLS and ICAMP algo-

rithms from [3] respectively from [4] and ICAMP-A, the ap-

proximate algorithm presented herein, with prior knowledge

of the support size, M = Lt; GRLS/ICAMP(-A)-F/V, the

versions of the above algorithms that estimate online the spar-

sity level using the PLS criterion in conjunction with a fixed (-

F) threshold M = 20 or a variable (-V) threshold with ∆ = 5;

SPARLS, the algorithm presented in [2]; TNWL, the best of

the algorithms from [1], using an optimized forgetting factor

for the inner RLS loop.

The GRLS, SPARLS and TNWL algorithms are config-

ured according to the recommendations from the correspond-

ing articles. The parameter γ used in SPALRS and the forget-

ting factor fRLS used in the inner RLS loop in TNWL were

optimized using a grid search. For all the cyclic algorithms

the number of optimization rounds was Nit = 5.

In Table 1 we present the average MSE (averaged over the

last 100 samples) for all the studied algorithms. Fig. 1 con-

tains the time evolution of our algorithm using a fixed M for

fTs = 0.001; at time t = 500, three of the Lt = 5 coeffi-

cients randomly change positions. In Fig. 2 we present the

2632

0 200 400 600 800 1000

10
−2

10
0

t (time)

M
S

E

GRLS

ICAMP−F

ICAMP−A−F

TNWL

RLS−SP

Fig. 1. MSE for Lt = 5 and fTs = 0.001.

Table 1. Average MSE for the studied algorithms.

fTs 0.002 0.001 0.0005 0.0002 0.0001

λ 0.90 0.92 0.94 0.96 0.98

RLS 5.3012 1.4565 0.36427 0.09774 0.04734

RLS-SP 0.0267 0.0110 0.00518 0.00246 0.00306

GRLS 0.0501 0.0178 0.00785 0.00343 0.00343

GRLS-F 0.0511 0.0189 0.00853 0.00356 0.00357

GRLS-V 0.0569 0.0187 0.00762 0.00330 0.00340

ICAMP 0.0534 0.0181 0.00790 0.00346 0.00343

ICAMP-F 0.0881 0.0249 0.00898 0.00343 0.00348

ICAMP-V 0.0683 0.0194 0.00762 0.00326 0.00340

ICAMP-A 0.0321 0.0139 0.00673 0.00310 0.00338

ICAMP-A-F 0.0409 0.0155 0.00706 0.00320 0.00342

ICAMP-A-V 0.0370 0.0146 0.00703 0.00323 0.00340

SPARLS 0.4417 0.1578 0.04225 0.01120 0.00767

γ 170 110 75 50 75

TNWL 0.1491 0.0311 0.01248 0.00471 0.00386

λRLSopt
0.9975 0.9825 0.9800 0.9850 0.9900

evolution of the MSE and the convergence time as a function

of the buffer length P , also for fTs = 0.001. For low val-

ues of the buffer length P the algorithms (ICAMP-A-F for

P = 2, ICAMP-A-V for P = 2, 3) exhibit large errors for

a small number of tests; we removed the associated test runs

from the data presented in the figures. The buffer B mitigates

any unwanted rapid changes in the support and allows the al-

gorithms to achieve a lower MSE. The length P can be chosen

as a trade off between the complexity and the MSE; it should

be selected sufficiently large to reject the possible instabili-

ties due to the approximations made; too large values have a

negative impact on the convergence time (Fig. 2).

5. CONCLUSIONS

We propose an adaptive low complexity algorithm, employ-

ing a fixed length buffer and a series of approximations, able

to outperform the non approximate counterpart and other

competing adaptive algorithms. The decrease in complexity

due to the update of the scalar products is proportional with

2 4 6 8 10 12 14 16 18 20
0.01

0.012

0.014

0.016

0.018

P (buffer length)

A
v
e

ra
g

e
 M

S
E

ICAMP−A

ICAMP−A−F

ICAMP−A−V

2 4 6 8 10 12 14 16 18 20

100

200

300

P (buffer length)

S
a

m
p

le
s

ICAMP−A

ICAMP−A−F

ICAMP−A−V

Fig. 2. Top: Average MSE as a function of the buffer length

P . Bottom: Convergence time (number of samples until the

MSE is within 5% of the average MSE) as a function of the

buffer length P . The variation time is given by fTs = 0.001.

1
2

N
M+P

which, for low sparsity levels and small buffers, be-

comes substantial. The choice of buffer length P is a trade

off between complexity and robustness.

6. REFERENCES

[1] D. Angelosante, J.A. Bazerque, and G.B. Giannakis,

“Online Adaptive Estimation of Sparse Signals: Where

RLS Meets the l1-Norm,” IEEE Trans. Sign. Proc., vol.

58, no. 7, pp. 3436–3447, Jul. 2010.

[2] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS:

The Sparse RLS Algorithm,” IEEE Trans. Sign. Proc.,

vol. 58, no. 8, 2010.

[3] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş, “Greedy

Sparse RLS,” IEEE Trans. Sign. Proc. (to appear), 2012.

[4] A. Onose and B. Dumitrescu, “Cyclic Adaptive Matching

Pursuit,” in ICASSP, Kyoto, Japan, Mar. 2012.

[5] S.G. Mallat and Z. Zhang, “Matching Pursuit with Time

Frequency Dictionaries,” IEEE Trans. Sgn. Proc., vol. 41,

no. 12, pp. 3397–3415, 1993.

[6] S.F. Cotter and B.D. Rao, “The Adaptive Matching Pur-

suit Algorithm for Estimation and Equalization of Sparse

Time-Varying Channels,” in 34th Asilomar Conf. Sign.

Syst. Comp., 2000, vol. 2, pp. 1772–1776.

[7] M.G. Christensen and S.H. Jensen, “The Cyclic Match-

ing Pursuit and its Application to Audio Modeling and

Coding,” in 41th Asilomar Conf. Sign. Syst. Comp., Nov.

2007, pp. 550–554.

[8] J. Rissanen, “Order Estimation by Accumulated Predic-

tion Errors,” J. Appl. Probab., vol. 23, pp. 55–61, 1986.

2633

