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ABSTRACT

This paper presents a novel methodology for statistical detec-
tion of Least Significant Bits (LSB) matching steganography.
It proposes to exploit a statistical model of natural images ad-
jacent pixels difference. In this paper, the detection problem is
first addressed in a theoretical context when cover image pa-
rameters are known. The most powerful likelihood ratio test
(LRT) is designed and its statistical performances are analyti-
cally expressed. Then, for a practical case of unknown image
analysis, an estimation of distribution parameters is proposed
to designed a test whose performance are also analytically es-
tablished. Numerical results on a large image database shows
the relevance of proposed methodology.

Index Terms— Hypothesis testing, Data hiding, Informa-
tion forensics, Detection theory, Image processing.

1. INTRODUCTION AND CONTRIBUTIONS

Steganography aims to provide a covert communication chan-
nel by hiding a secret information into a host digital medium.
Many steganographic tools are easily available on the Internet
putting steganography within the reach of anyone. The detec-
tion of such information hiding techniques has thus become
a crucial problem. In an operational context, the detection
of simple but often found steganographic scheme is very im-
portant. The vast majority of common steganographic tools
embeds hidden information in the LSB plane. Hence, many
different methods have been proposed to detect information
hidden in the LSB of digital media, see [1]. Among the two
LSB steganographic scheme, considerable progress have been
made for the detection of LSB replacement whereas detection
of LSB matching scheme remains a challenging problem [2].

The detectors dedicated to LSB matching steganography
can be roughly divided into two categories. Most of the lat-
est detector are based on supervised machine learning meth-
ods [2]. On the opposite, it has been observed that LSB
matching acts as a low-pass filter on medium histogram ; this
finding leads to the family of histogram based detectors [2, 3].

In an operational context, proposed detector must be im-
mediately applicable without any training phase. Moreover,
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the most important challenge is to propose a detection al-
gorithm with analytically predictable probabilities of errors
which remains an open problem of machine learning. For
these reasons, machine learning based detectors are to pro-
scribe. Histogram-based detector are interesting, but these ad
hoc methods have been designed without using a statistical
cover model and hypothesis testing theory. Hence, their sta-
tistical performance can only be approximated by simulation.

An alternative approach is to design a test with known the-
oretical properties by using decision theory with a model of
cover media. The first step in this direction have been pro-
posed in [10, 4]. In this paper, this methodology is used with
an original statistical model of natural images which prevents
occurrence of nuisance parameters. The original contribution
is threefold: 1) A statistical model of adjacent pixels differ-
ence is used in order to avoid dealing with nuisance param-
eters. 2) The most powerful (MP) LRT is designed and its
statistical performances are analytically calculated. 3) Based
on the LRT, an efficient test is proposed when distribution pa-
rameter have to be estimated and its statistical performances
are established. Numerical experimentation shows that pro-
posed test outperforms the state-of-the-art detectors.

The paper is organized as follows. Section 2 presents the
used statistical model of cover image. The problem of LSB
matching detection is stated in Section 3. The optimal LRT
is presented and its performances are calculated in Section 4.
Finally, proposed test based on distribution parameter estima-
tion is presented in Section 5 and its performance are ana-
Iytically established. The relevance of proposed approach is
emphasized through numerical experimentation presented in
Section 6 and Section 7 concludes the paper.

2. STATISTICAL MODEL OF MEDIA

This paper mainly focuses on natural images though the pro-
posed methodology can be applied for any kind of digital me-
dia as long as present statistical model holds. Hence, let the
column vector C = (cy,...,cy)7 represents a cover image of
N = Ny xN, grayscale pixels. The set of grayscale level is
denoted Z = {0;... 2B 1} as pixels values are usually un-
signed integer coded with B bits. Each cover pixel ¢, results
from the quantization: ¢, = Q(y,)where y, € R* denotes the
raw pixel intensity recorded by the camera and Q represents
the uniform quantization with unitary step:

Ox)=kexelk—1/2;k+1/2].
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(a) Distributions of &, (2) for Lena image.

(b) Distributions of &, (2) for Lena image.

() Distribution of §, (2) for a heartbeat sound.

Fig. 1: Comparison between empirical distribution of &, (2) and proposed Laplace model (3) with ML estimation parameter b.

In [4] it is proposed to model each RAW image pixel as
an independent Gaussian random variable:

Yn =6+ & ~ N (6,,62), 4))

where 0, is a deterministic parameter and &, is a zero-mean
Gaussian noise representing all the noises corrupting the
medium. The mean vector 8 = (6, ...,6y)" acts as nuisance
parameters for detection of LSB steganography. It is espe-
cially shown in [4] that unsuitable estimation of 8 may cause
a high loss of detection power while estimation of 0 remains
an open problem in image processing. Moreover, model (1)
assumes that pixels are statistically independent. This hardly
holds for rendered image which have been processed by dig-
ital camera. Therefore, it is proposed is this paper to exploits
a rather simple natural image statistical model which avoids
dealing with complex nuisance parameters.

The post-acquisition processes, see [5, 8], make pixels highly
correlated with its neighbors. This fact was used in steganaly-
sis to design features for machine learning based detectors [6].
Previous researches have proposed to statistically model ad-
jacent pixels difference using Bessel K forms, generalized
Laplacian of generalized Gaussian distributions [7]. Though
the theoretical foundations of such models remains opaque, it
is proposed in this paper to use adjacent pixels difference. For
the sake of clarity, let us define §, as follows:

Cn:§n+]_énvvne{lv"'aN_l}v (2)

which represents the difference between adjacent pixels
noise. Seeking simplicity, it is assumed that for all n, §, € R
is a stochastic term which follows a zero-mean Laplacian
distribution, denoted P,, whose probability density function

(pdf) pp is:
3

where b is the scale parameter of Laplacian distribution.

As discussed in [8, 9], the Laplacian distribution could
possibly be replaced by a more accurate one. Figures 1 show
a comparison between empirical distribution of §, and max-
imum likelihood estimation (MLE) of Laplacian distribution
for Lena image (Figures 1a and 1b) and for a recorded heart-
beat sound (Figure 1c). Obviously, Laplacian distribution is a
rather accurate model of observations.

To statistically model stego-images, the two following as-
sumptions are usually used [2, 3] : 1) each cover pixel has the
same probability of being used to hide a secret bit and 2) the
message M = (my,...,my)" is compressed or cyphered, each
hidden bit m; thus follows a binomial distribution %(1,1/2).
Let the embedding rate R be defined as the number of hidden
bits per pixel: R = L/N. The LSB matching scheme consist
in randomly incrementing or decrementing each pixel value
whose LSB differs from the bit to be inserted. Hence, using
the two previous assumptions, a short algebra shows that after
insertion at rate R the stego-image S = (s1,...,sy)7 verifies:

{]P’[sn = ¢y =1—R/2,
Plsp =cn—1] =R/a=Pls, =cp+1].

It thus follows from Equations (3) and (4) that after insertion
at rate R, the stochastic term C,If (2) follows a distribution de-
noted Qg ;, whose pdf is given, for all x € R, as:

“4)

arp(x) = B (pp(x—2) + pp(x+2)) )

2 2
+ (55 (o= 1)+ ppxt 1)) + (1-R+22) py ().
3. DETECTION PROBLEM STATEMENT
Let Zz{zn}n[\’:l denotes an inspected image, which is either
a cover or a steganographic image. Il follows from distribu-

tions (3) and (5) that the hypothesis testing problem of LSB
matching steganalysis consists in choosing between:

Ho={z, ~ By, b €RT ¥n=1,....N}
HA={zy ~ Orp,b e Rt 0<R<1, Vn=1,...,N}.
The goal is to find a test § : 2N+ {J#); 7 } which accepts

hypothesis 7 if 8(z) = % (see details on hypothesis testing
in [11]). Let the class of tests with a false-alarm probability

upper-bounded by o be
Hoy = {6 s sup Py(6(z) =74) < 0(0},
beR+

with ;(A), j = {0;1} the probability of event A under hy-
pothesis j. The power function Bg ; (&) associated with test &
is the probability of correct detection:

Br5(8) =P1(8(2) = 741),

which, of course, depends on rate R and parameter b.

(6)

)
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When parameter R and b are known, the problem (6) is to
choose between two simple hypotheses. In such a situation,
it follows from Neyman-Pearson lemma [11, theorem 3.2.1],
that the MP test over the class 7y, is the LRT defined by the
following decision rule

i [ Ao i A(Z) < g,
(Sl?(z)_.{jﬁ i A (Z) > 7o, (®)
with A™(Z)= Y A™(5) = Y log (). o
=1 n—1 pb(gn)

and Ty, is the solution of equation P, [6"P(Z) > 74, = g, to
insure that 6™ € g, .

However, in practice, neither the embedding rate R nor the

scale parameter b are known. In this situation, two difficulties
occur. First, an estimation procedure of b is required to de-
sign a Generalized LRT (GLRT). Second, the hypotheses (6)
do not admit a monotone likelihood ratio. As a consequence,
the existence of a UMP test, which maximizes the power B 5,
uniformly with respect to the rate R, is compromised.
The maximum likelihood estimation of parameter b is possi-
ble to overcome the first difficulty. On the opposite, the design
of an optimal test for any rate R is a difficult problem which
lies outside the scope of present paper. Indeed the main goal
of this paper is first, to calculate the detection performance of
LRT (Section 4) and, second, to design a sub-optimal GLRT
whose statistical performance are also analytically established
(Section 5).

4. LIKELIHOOD RATIO TEST (LRT) FOR SIMPLE
HYPOTHESIS

The calculation of LRT statistical properties requires to define
the distribution of LR A"P(Z). In the present paper, it is pro-
posed to use an asymptotic approach which is especially rele-
vant due to high number of pixels in a digital image. Hence, it
follows from central limit theorem [11, theorem 11.2.5] that
the log-LR A" (Z) satisfies, as N — oo:

N—1
xr (A" (En)] = (N=1)mi(b)

~ A (0,1), (10

(N—1)s7(b)

where ~- represents the convergence in distribution, and
m;(b) =E; {Anp(cn)} and s?(b) =Var; [Anp (Z,,)} respectively
denotes the expectation and the variance of the log-LR
A" (&) under hypothesis 57, i = {0; 1}.

The log-likelihood ratio A"P({,) is a piecewise-defined func-
tion, see Figure 2, which can accurately be approximated us-
ing a Taylor expansion. However, the exact expression of
m;(b) and s?(b) are simple but rather long and do not have
a great interest in this paper. Thus, it is proposed to denote

mov) = [ p(OAT(E)dE,
and 53(6) = [ p(§) (A™(£) = mo(8))dC.

the two first moment of log-LR A" ({,) under 54 which only
depends on scale parameter b and can simply be analytically

an

N
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Fig. 2: Illustration of log-LR A" ({,) showing its piecewise-
definitions and their first order Taylor expansion.

calculated. The calculation of moments m; (b) and s;(b), un-
der .77, is similar to (11) and thus, omitted due to the lack of
space.

From the central limit theorem (10) it is proposed to
slightly modify the LR A" ({,) by defying:

Avzy- LY {A“%Cn)mo(b)

N () ] (12)

n=1

so that under null hypothesis .7 it holds that A™(Z) ~

A(0,1). The use of LR A™(Z) does not change the prop-
erties of LRT (9) up to the decision threshold 74, and permits
to simplify the expression of its parameters in the following
Theorem 1.

Theorem 1. Assuming that model (2)-(3) holds and that scale
parameter b are known, then, the decision threshold:

Toy =P (1 - ), (13)

where ®~! denotes the Gaussian standard quantile function
(inverse cdf), asymptotically warrants that as N — oo the LRT

based on A™(Z) is in the class Ha,. For any R € [0;1],
choosing the decision threshold Ty, (13) the power [3;;57 as-
sociated with the LRT (8) is given by:

e =1 CTEZ; oo —RVN—1 (ml (bs)lz;)to(b) ))(714)

where m;(b), and s;(b) are the two firsts moments of LR
A" (&) under hypothesis 7 ,i = {0,1} and ® denotes the
Gaussian standard cdf.

The proof of Theorem 1 is omitted due to lack of space.

It can be noted that the main advantage of using LR A™(Z),
as defined in (12), is that the decision threshold given in (13)
only depends on 0. Thus, Ty, remains the same for any in-
spected image and for any embedding rate R.

Additionally, Equation (14) provides an explicit expression of
detection power of the most powerful LRT which thus, can be
used as an optimal bound for any proposed test.
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5. GENERALIZED LRT FOR UNKNOWN MEDIA

When inspecting an unknown medium, the proposed ap-
proach requires an estimation expectations vector 6 =
(61,...,0y)T to calculate {,, see Equation (2). The problem
of estimating pixels expectation in an open problem which
have been widely studied in the literature and lies outside the
scope of this paper. In the present paper, it is proposed to use
two common methods for estimating pixels expectation. First
the wavelet shrinkage method based on soft-thresholding of
wavelet decomposition coefficients is used [12]:
0y =W'7(WZ), (15)
where W is a unitary matrix representing wavelet decompo-
sition and . is the soft-thresholding function.
Second, because it has been successfully used for WS ste-
ganalysis [1], a 2D linear filtering of image is used:

057 =F(Z)=

where .# represent the linear 2D filtering operation which
consists in a convolution product * between image Z and fil-
ter matrix F', usually of small size typically 3 x 3.

The consequent impact of detection performance are shown
through numerical results in Figures 4.

The scale parameter b of Laplacian distribution has also
to be estimated. According to definition of GLRT, see also
definition of class g, , parameter b has to be estimated twice
using maximum likelihood estimation under both hypothesis:

max 127! p; ()
b06R+

_max Hn 1 49g bl(g’l)
bleR

F+Z, (16)

A$(Z) = log

a7

The maximum likelihood estimation (MLE) of parameter b
under J# does not have an explicit solution. Thus, in the
present paper it is proposed to use the MLE of parameter b
given, for medium Z, under hypothesis %) by:

~ — o~ N=l Py (Cn)
A¥r(Z, ZA“ L)=Ylog| 22—, @8
= =R VIS
where Z’,, = (zn—§n+ 1)— (1,1—5,1) and §n is the estimated n-th

pixel expectation (15)-(16). A short calculation shows that the
MLE by of b under hypothesis .77 is given, for each inspected

image, by:
1 N-1
= N_1 ’;1 |Cal-

Moreover, in virtue of central limit theorem (10), a short al-
gebra shows that the estimation by satisfies:

b2
)

By using distribution of Eo (20), the two first moments of
A&"(Z) are given under hypothesis 7%, from the law of to-

19)

bo~ N <b (20)

tal expectation and the law of total variance, by:

iig(b) = B, [Eo [A2"(Z) [ o | 1)

%(b) = EZO [Varo [Kglr(z) ’/I;()H —i—Var;O [EO [Xg]r(z) |2?\0]i|

where EZOH and VC”EOH denotes the expectation and vari-

ance with respect the random variable bg. The calculation of
moments 771 (b) and 5] (b), under hypothesis .77, is similar to
(21) and thus, omitted due to the lack of space.

As previously proposed in the case of the LRT (12), let us
formally defines proposed test 8¢ as follows:

1 N lAglr(C) mO(b) <;L_\glr

J if

3(2) = e
, 1 Aglr mo(b) _ ~gr

24 if T ) > T

(22

The following Theorem 2 provides an analytic expression of
proposed test §&"(Z) parameters.

Theorem 2. Assuming that estimation ) of 0 (15)-(16) satis-
fies model (3), then, the decision threshold:

T =@ (1- o) (23)

asymptotically warrants that proposed test §8(Z) € Hy,.

For any R € [0;1], choosing the decision threshold T, Aglr (23),

the power ﬁﬁ% associated with the test 8¢ (22) is given by
:bo

_ @Eg@gr_zem(ﬁm g <b>)224)

where ii;(b), and 5;(b) the two firsts moments of LR A€¥(,)
under hypothesis ¢ ,i = {0,1}, see Equation (21).

ﬁglf _

R.bo

The proof of Theorem 2 is omitted due to lack of space.

6. NUMERICAL RESULTS

To emphasis the relevance of proposed model and approach, a
numerical simulation on a large database was performed. The
BOSS contest database [13] made of 10000 images of size
512 x 512 was used. Figures 3a and 3b presents the numerical
results witch permits a comparison between proposed GLRT
and two state-of-the-art detectors, namely ALE [2] and Ad-
jacent HCFCOM [3]. It can be noticed that proposed GLRT
based on wavelet or 2D-filtering content estimation outper-
forms these two detectors, especially for low embedding rate
R, see Figure 3b with R = 0.25.

This paper aims to design a test with analytically pre-
dictable performance. Hence, Figure 4 presents a comparison
between empirical power of LR and GLR tests and their theo-
retical expressions, given by Equations (14) and (24). Results
were obtained using a Monte Carlo simulation with 10000
realizations each with N = 1024 pixels following a Lapla-
cian distribution with scale parameter b = {2;4;10}. Figure 4
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Fig. 3: Performance comparison between proposed test and detectors proposed in [2, 3] for BOSS contest database [13].
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Fig. 4: Comparison between theoretical and empirical detec-
tion power as a function of false alarm probability ¢ ; simu-
lated data with N = 1024 samples and b = {2.5;5;10}.

highlights that empirical detection power is very closed to the
theoretically established expression. However, it should also
be noted that even though ML estimation of scale parameter
is unbiased and has a small variance (20), this variance highly
impacts the detection power. Indeed the likelihood ratio is
very sensitive to a small error on scale parameter.

7. CONCLUSION

This paper made a first step in the statistical detection LSB
steganography. A methodology is proposed to avoiding deal-
ing with nuisance parameter by using a statistical model of ad-
jacent pixels difference. The main contributions are the three-
fold. First, the most powerful LRT is presented and its statisti-
cal performance are analytically established ; this provides an
optimal bound on detection power for any test. Second, when
none image parameters are known, a test based on GLRT is
presented and its statistical performances are also established.
Especially, the decision threshold that warrants a prescribed
false-alarm probability is explicitly given. Finally, numerical
simulation show that proposed test outperforms state-of-the-
art detectors.
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