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ABSTRACT

Many imaging arrays have a regular sensor configuration.
This regularity can be exploited for self-calibration of the
array. In this paper, we introduce a new self-calibration
method for regular arrays based on weighted alternating
least squares (WALS) optimization that appears to be
statistically efficient and does not impose requirements
on the source structure or on pre-calibration of the array.
We show results from Monte Carlo simulations indicating
that the proposed method already attains the Cramer-Rao
bound (CRB) at very low SNR and produces unbiased
results. Our simulations also indicate that the approach
most commonly used in the literature does not attain the
CRB at high SNR and produces biased results at low
SNR.

Index Terms— autocalibration, self-calibration, uni-
form rectangular array, uniform linear array, redundancy
calibration

1. INTRODUCTION

Calibration errors can significantly reduce the perfor-
mance of high dynamic range imaging methods and high-
resolution DOA estimation techniques. Fortunately, many
imaging arrays used in, for example, SAR applications
and radio astronomy exploit regularly spaced antennas.
This regularity can be exploited for self-calibration of the
array as originally discussed indepedently in [1,2]. Based
on new developments in several fields, several groups
recently started to study this problem again [3–5]. Since
these methods exploit the fact that the regularity of the
array causes specific spatial frequencies to be measured
multiple times thus making the information contained in
the array covariance matrix redundant, we refer to such
methods as redundancy calibration.

Unfortunately, all methods proposed so far are either
not statistically optimal (i.e., they produce biased results
or results with a relatively high variance) [1, 2, 4, 5], or
impose requirements on the source structure (e.g., a lim-
ited number of discrete sources) [6] or require some form

of pre-calibration [3]. In this paper, we present a statis-
tically optimal self-calibration scheme that should work
for arbitrary source structures and only assumes that the
array is composed of identical antennas, which is usually
the case for imaging arrays. Although the algorithm is in-
spired by and exploits some of the results in [7], it deals
with a different problem: the algorithm proposed here
deals with self-calibration of a regular array without re-
quiring prior knowledge of the source structure while [7]
discusses self-calibration of an array with arbitrary ge-
ometry using prior knowledge of the source structure. We
compare this algorithm with the commonly used method
based on the logarithm of the elements of the array co-
variance matrix and with the Cramer-Rao bound (CRB),
showing that the proposed algorithm is unbiased and at-
tains the CRB.

The paper is organised as follows: in the next section,
we introduce the data model and provide a description of
both algorithms. In Sec. 3 we assess the performance of
both algorithms using Monte Carlo simulations by check-
ing for biases and comparison with the CRB before sum-
marizing our conclusions in Sec. 4.

Notation: 6 a denotes the phase of the complex value
a, while |a| gives its absolute value. The natural loga-
rithm is denoted bylog, the matrix transpose byT , the
Hermitian transpose byH and the pseudo-inverse by†.
The Frobenius norm is denoted by‖ · ‖2

F , conjugation by
·, an estimated value bŷ· and the Kronecker product by
⊗. 0 represents a vector of appropriate size filled with ze-
ros,diag (a) forms a diagonal matrixA with the vectora
on its main diagonal,vec (A) vectorizes the matrixA by
stacking its columns andunvec (·) undoes this operation.

2. THEORY

2.1. Data model

TheP×P array covariance matrixR of aP -element sen-
sor array with unknown receiver gainsγ = [γ1, · · · , γP ]

T

and phasesφ =
[
ejφ1 , ejφ2 , · · · , ejφP

]T
and unknown re-

ceiver noise powersσn = [σn,1, σn,2, · · · , σn,P ]T can be
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described as

R = ΓΦR0Φ
HΓH + Σn = GR0G

H + Σn. (1)

whereG = ΓΦ = diag (g) with Γ = diag (γ) end
Φ = diag (φ), R0 represents the array covariance ma-
trix that would be measured by an ideal array without re-
ceiver noise and calibration errors andΣn = diag (σn).
Note thatR0 has a Toeplitz-structure for a uniform lin-
ear array (ULA) and a Toeplitz-block Toeplitz structure
for a uniform rectangular array (URA) [4]. This property
is exploited in redundancy calibration by correcting any
deviation from this structure inR by compensating the
complex valued receiver gainsG.

2.2. Conventional redundancy calibration

The conventional approach [1, 2, 4, 5] is based on the
observation that the off-diagonal elements ofR are de-
scribed by

Rij = γie
jφiγje

−jφjR0,ij . (2)

The problem of finding amplitudes and phases is then split
into two separate problems by taking the logarithm, such
that

log |Rij | = log γi + log γj + log |R0,ij | (3)
6 Rij = φi − φj + 6 R0,ij . (4)

Equation (4) may suffer from a2π phase ambiguity. Pos-
sible solutions to this problem have been proposed (see,
e.g., [3]), so we will not elaborate on this issue, which is
outside the scope of this paper.

Due to the Toeplitz or Toeplitz-block Toeplitz struc-
ture of R0, we can identify setsSq with q = 1, · · · , Q
of pairs of indices such thatR0,ij = R0,q∀ (i, j) ∈
Sq. For each of these sets of redundantly measured
spatial frequencies, we can build a system of equa-
tions cf. (3) and (4) withR0,ij = R0,q. For the gain
phases, we can therefore define a parameter vector
θφ = [φ1, φ2, · · · , φP , 6 R0,1, 6 R0,2, · · · , 6 R0,Q]

T and
define the data vector as

ψφ =

[
vec

(
6 R̂ij

)

0

]
. (5)

Since there is no prior knowledge on the source structure,
there is an identifiability problem: a phase gradient over
the array is unidentifiable from a pointing error. Further-
more, we can only observe phase differences between the
elements. The zeros at the end of the data vector are added
to describe the phase constraints needed to resolve these
ambiguities. In the literature, they are usually resolved by
imposing the following constraints (see, e.g., [4,6]):

P∑

p=1

φp = 0,
P∑

p=1

xpφp = 0,
P∑

p=1

ypφp = 0, (6)

where(xp, yp) denotes the position of thepth element in
a Cartesian coordinate frame. With these definitions, we
can formulate the phase estimation problem as

ψφ = Mφθφ, (7)

where the last three rows ofM describe the constraints
formulated in (6) and the other rows describe the set of
equations defined by (4). This provides a straightforward
solution forθφ.

With a similar definition forθγ , ψγ andMγ , we can
obtain a solution for the amplitudes as well. Since we are
estimating bothg andR0, the gain vector can only be
determined up to a scaling factor. In this paper, we will
normalizeg such that it has norm 1.

2.3. Weighted Alternating Least Squares

In the conventional approach, the logarithm is used to sep-
arate the problem into a phase estimation problem and
an amplitude estimation problem. The disadvantage of
applying a logarithm to the measured data is, that it dis-
turbs the probability density function of the noise on the
data, which may cause problems in cases with low SNR
[3, 5]. We therefore propose to solve the problem us-
ing a weighted alternating least squares (WALS) approach
that iterates between estimating the complex valued sen-
sor gains andR0.

Based on (1), we can formulate our calibration prob-
lem as the weighted least squares estimation problem

{
ĝ, R̂0, σ̂n

}
=

argmin
g,R0,σn

wwwWc

(
R̂ − GR0G

H − Σn

)
Wc

www
2

F
(8)

Covariance matched weighting provides estimates that
are asymptotically, for a large number of samples, equiv-
alent to ML estimates [8]. We therefore chooseWc =
R−1/2. The knowledge of the structure ofR0 can be
included in the estimation problem by defining a real val-
ued parameter vectorθ containing the real and imaginary
parts of all unique values inR0 and a selection matrixIs

such thatvec (R0) = Isθ. With these substitutions, we
can reformulate our estimation problem as

{
ĝ, θ̂, σ̂n

}
=

argmin
g,θ,σn

wwwW
(
vec

(
R̂ − Σn

)
−

(
G⊗ G

)
Isθ

)www
2

F
(9)

whereW =
(
R

−1
⊗ R−1

)
.

If θ andσn are known, we can solve forg. This prob-
lem has been extensively discussed in [7], so we simply
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state the solution here. First, construct the column vectors

c1,ij =
[{

R̂ikR0,jk : i, j 6= k
}]

(10)

c2,ij =
[{

R0,ikR̂jk : i, j 6= k
}]

(11)

where the curly braces denote a set of valuesR̂ikR0,jk

whose indices satisfy the indicated condition. We use
these vectors to construct a matrixM with entriesMij =

c
†
2,ijc1,ij . The gain vectorg can be extracted from this

matrix by an eigenvalue decomposition.
If g andσn are known,θ follows from

θ̂=argmin
θ

wwwWvec
(
R̂ − Σn

)
− W

(
G ⊗ G

)
Isθ

www
2

F

=
(
W

(
G ⊗ G

)
Is

)†
Wvec

(
R̂ − Σn

)
. (12)

The diagonal elements ofR can be modeled to arbitrary
precision by compensating the difference betweenR0

perturbed by the sensor gains with the receiver noise
powers. To avoid the interplay between the sets of param-
eters, we replacêR − Σn by R̂−, which is equal toR̂
with the entries on its main diagonal set to zero. Replac-
ing the pseudo-inverse with the Moore-Penrose inverse,
we obtain

θ̂ =

(
IH
s

(
G

H
R̂

−1

G ⊗ GHR̂−1G

)
Is

)−1

×

IH
s

(
G

H
R̂

−1

⊗ GHR̂−1

)
vec (R−) . (13)

Note that we have used the measured covariance matrix
R̂ instead of the true covariance matrixR, which is un-
known in actual measurements, to provide the covariance
matched weighting. Also note, that althoughR−1/2 pro-
vides optimal weighting in the original formulation of the
problem in (8), the closed form solution only requires
R̂ and does not require computation of its matrix square
root.

Based on these results, we propose the following
WALS algorithm:

1. Initialization Set the iteration counteri = 1, and
initialize the gains (̂g[0]) by setting all of them to
unity (or another equal value).

2. Estimateθ̂
[i]

using (13) withG = diag
(
g[i−1]

)

and computeR[i]
0 = unvec

(
Isθ

[i]
)

3. Estimateg[i] using the procedure in [7] summa-
rized above withR0 = R

[i]
0 and apply the gain

constraint and phase constraints to resolve the gain
and phase ambiguities.

4. Check for convergence or maximum number of iter-

ationsIf 1
P

∑P
p=1

∣∣∣g[i−1]
p − g

[i]
p

∣∣∣ /
∣∣∣g[i]

p

∣∣∣ < δ or i >

imax, stop, otherwise increasei by 1 and continue
with step 2. In our simulations, we usedδ = 10−6

andimax = 15.
5. Estimateσn by setting them equal to the diagonal

elements of̂R.

2.4. Improving computational efficiency

Even if (13) is implemented efficiently by exploiting the
structure ofIs, it still requires orderP 4 multiplications
due to the Kronecker product. This makes this part of the
algorithm the computationally most demanding part.

The operation described in (13) should, in principle,
represent a weighted average over all baselines in each
setSq of redundantly measured spatial frequencies. If all
sensors have approximately the same gain and receiver
noise, all covariances in each setSq are measured with the
same SNR and the covariance matched weighting, which
introduces the Kronecker product, is not expected to give
a big improvement. This holds in particular for the low-
SNR regime, where we haveR ≈ σnI, whereI denotes
the identity matrix. If we omitW and calibrate the mea-
sured covariance matrix using the complex valued sensor
gains obtained in the previous iteration of the algorithm,
we can formulate the problem of estimatingθ as

θ̂ = argmin
θ

www
(
G⊗ G

)−1
vec (R−) − Isθ

www
2

F
. (14)

Solving forθ gives

θ̂ =
(
IH
s Is

)−1
IH
s (vec (R−) ⊘ (g ⊗ g)) , (15)

where⊘ denotes element-wise division. Since the struc-
ture of Is makesIH

s Is a diagonal matrix with the multi-
plicity of the respective parameters on the main diagonal,
the gain correction of the measured values and the multi-
plication of the result withIH

s has now become the most
demanding part of the calculation. However, both oper-
ations require only orderP 2 multiplications, making the
gain estimation the most demanding part of the algorithm
with orderP 3 operations [7]. We have tested this idea
using Monte Carlo simulations for the same array and
source model as described in the next section and found
that it produced similar results. This simplified algorithm
has the same orderP 3 computational complexity as the
conventional approach.

3. MONTE CARLO SIMULATIONS

We have conducted Monte Carlo simulations to com-
pare the statistical performance of the WALS based
redundancy calibration with conventional redundancy
calibration and the Cramer-Rao bound (CRB). These
simulations were done for an8 × 8 uniform rectangular
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Fig. 1. Comparison of the variance on the gain amplitude
estimates obtained using the WALS approach and the con-
ventional (conv.) method with the CRB forN = 3 · 105

samples.

array (URA) with half wavelength spacing between its
elements. We defined a source model consisting of three
sources at(l, m)-positions(−0.3, 0.4), (0.2,−0.7) and
(0.8, 0), wherel andm are 2-D directional cosines, and
source powers 1, 0.7 and 0.1 respectively. Although both
methods can handle far more complex source models
including diffuse sources, we have opted for this simple
model for reproducibility of the results.

The complex valued receiver gains were generated
by adding i.i.d. complex Gaussian noise with zero mean
and standard deviation 0.1 to unit gains. Before applying
these gains to the modeled signal, we applied the same
phase and amplitude constraints as required by the cali-
bration algorithms to avoid identifiability problems. This
step facilitates comparison between the estimated gains
and the true gains. Although the algorithms can handle
even larger gain differences between the elements, we did
not want the probability density function of the estimated
gains and phases to differ significantly from the Gaussian
distribution, since that would only complicate the anal-
ysis. Finally, receiver noise powers with unit amplitude
were added to all autocorrelations. This gave an SNR
varying between 2.1% and 3.9% per receiving element
due to the gain differences between them.

We did Monte Carlo simulations forN = 300, 1000,
3000, 104, 3 · 104, 105, 3 · 105 samples assuming that all
signals were i.i.d. complex Gaussian noise. Each simula-
tion was run 500 times. Figures 1 and 2 show the vari-
ance on the estimated gains and phases respectively for
both methods forN = 3 · 105 and compare this with the
CRB. This result indicates that for a large number of sam-
ples, the WALS method attains the CRB, while the con-
ventional method does not. The latter can be explained by
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Fig. 2. Comparison of the variance on the gain phase es-
timates obtained using the WALS approach and the con-
ventional (conv.) method with the CRB forN = 3 · 105

samples.
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Fig. 3. Comparison of the variance on the gain and phase
estimates for a representative element (p = 12) obtained
using the WALS algorithm and the conventional (conv.)
approach with the CRB for different numbers of samples.

the sub-optimal weighting that is implicitly applied to the
data by taking the logarithm.

If we compare the variance of the estimated parame-
ters with the CRB as function of the number of samples,
as done in Fig. 3 for two representative parameters, we
see that about 1000 samples are already sufficient for the
WALS method to attain the CRB. With 1000 samples, the
SNR per element varies between 0.66 and 1.22 per ele-
ment. Fortunately, the covariance matrix provides about
10 times as many data points as there are free parameters,
allowing us to find a meaningful solution despite the low
SNR.

1307



0 20 40 60 80
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

sensor index

se
ns

or
 p

ha
se

 (
ra

d)

 

 

WALS
conv.
true

Fig. 4. Comparison of the average gain phase estimate
for each element obtained using the WALS approach and
the conventional (conv.) method with the true value for
N = 1000 samples.

From random matrix theory, it is known that matrix-
wise convergence of the array covariance matrix requires
P/N < 0.1 [9]. Since covariance matched weighting
requires inversion of the array covariance matrix, matrix-
wise convergnece is required. WithP = 64 andN =
1000, this requirement is just met, whileN = 300 gives
P/N ≈ 0.21. The proposed method thus attains the CRB
already with a fairly minimal number of time samples.

It is interesting to note that the conventional method
seems to perform better than the CRB when the number
of samples drops below104. Figure 4 indicate how this
is possible by showing the mean value of the estimated
phases of all runs in the Monte Carlo simulation for 1000
samples and comparing them with the true values of the
parameters. The true values and the estimates found by
the WALS method vary significantly between the receiv-
ing elements and converge to the same values if the num-
ber of runs in the Monte Carlo simulations is increased.
The mean of the estimates produced by the conventional
method only span a limited range of values causing them
to deviate from the true values. A similar effect was seen
for the gain parameters. This indicates that the conven-
tional method has a tendency to equalize the gain and
phase estimates in the low-SNR regime, thus causing a
bias in these estimates.

4. CONCLUSIONS

In this paper, we presented a new algorithm based on
WALS optimization to exploit the regularity in the sensor
configuration of many imaging arrays for self-calibration.
Our Monte Carlo simulations indicate that this method is
statistically efficient, even for very low SNR and a fairly

minimal number of time samples. The method commonly
used in the literature does not attain the CRB at high SNR
and produces a bias in the estimated parameters at low
SNR.

5. REFERENCES

[1] J.E. Noordam and A.G. de Bruyn, “High dynamic
range mapping of strong radio sources with applica-
tion to 3C84,” Nature, vol. 299, no. 5884, pp. 597–
600, Oct. 1982.

[2] A. Paulraj and T. Kailath, “Direction of Arrival Es-
timation by Eigenstructure Methods with Unknown
Sensor Gain and Phase,” inIEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), Apr.
1985, pp. 640–643.

[3] A. Liu et al., “Precision Calibration of Radio Interfer-
ometers Using Redundant Baselines,”Monthly No-
tices of the Royal Astronomical Society, vol. 408, pp.
1029–1050, Oct. 2010.

[4] P. Heidenreich and A. M. Zoubir, “Gain and Phase
Autocalibration for Uniform Rectangular Arrays,” in
IEEE Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP), May 2011, pp. 2568–2571.

[5] P. Noorishad, S.J. Wijnholds, A. van Ardenne, and
J.M. van der Hulst, “Application of Redundancy Cal-
ibration to Phased Arrays and Some Limitations,” in
General Assembly and Scientific Symposium of the
International Union of Radio Science (URSI GASS),
13-20 Aug. 2011.
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