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ABSTRACT

In this paper, we propose a refinement procedure for the es-
timation of polynomial-phase signal (PPS) parameters. The
PPS parameters are estimated using a method based on the
cubic-phase function (CPF), known to outperform the stan-
dard high-order ambiguity function (HAF) in terms of both
the estimation accuracy and performance threshold. The
method is referred to as the hybrid CPF-HAF (HCH). Since
in the calculation of the HCH we cannot use fast Fourier
transform algorithms, it is very important to decrease the
number of HCH samples required for precise parameter es-
timation. To that end, we propose an approach based on the
dichotomous search of the HCH peak. With the calculation
of only several additional HCH samples, we are able to esti-
mate parameters accurately without using time consuming
oversampling or maximum-likelihood approach.

Index Terms— Dichotomous search, cubic-phase func-
tion, high-order ambiguity function, polynomial-phase sig-
nal.

1. INTRODUCTION

Polynomial-phase signals (PPSs) arise in a number of ap-
plications. For example, in passive intelligent radar surveil-
lance, we try to determine what type of radar pulse is being
transmitted, a linear FM, quadratic FM, or some other type.
Another application includes signals produced by brown
bats [1]. The parameters of these signals can serve to in-
dicate the activity of the bat.

One of the most popular approaches for parameter
estimation of PPSs is based on the high-order ambigu-
ity function (HAF) [2] and its derivatives [3, 4]. In the
HAF-based approach, the original signal is transformed
to a complex sinusoid whose frequency is related to the
highest order phase coefficient. The signal is transformed
using the auto-correlation procedure and in order to esti-
mate the Pth order phase coefficient, we have to perform
P — 1 auto-correlations. However, each auto-correlation
increases the number of interference terms and increases
the performance threshold by approximately 6 dB [5].
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The cubic-phase function (CPF) is introduced in or-
der to enable more accurate estimation of parameters of a
cubic-phase signal with lower signal-to-noise ratio (SNR)
threshold than with the HAF [1]. This is due to the fact that
only one auto-correlation of the original signal is performed
instead of two required in the HAF. The CPF-based method
requires one-dimensional maximizations, whereas the max-
imum likelihood (ML) method requires three-dimensional
maximizations. Moreover, the CPF parameter estimates are
asymptotically optimal or near optimal at high SNRs.

Recently, an extension of the CPF to higher order PPSs,
referred to as the hybrid CPF-HAF (HCH), has been pro-
posed [6]. In comparison to the HAF, the HCH performs
one auto-correlation less and the error-propagation effect is
reduced two times. Specifically, the SNR threshold is de-
creased by about 9 dB, while the estimation mean-squared
error (MSE) is around 2 dB lower [6].

The parameter estimation is performed using the coarse
and fine searches strategy. The coarse search is performed
by locating the peak of the considered function (HAF, CPF
or HCH), where the function is calculated over the prede-
fined grid of values. The fine search performs the peak
maximization through oversampling or some iterative pro-
cedure. Unlike the HAF, the calculation of the CPF/HCH
cannot be facilitated by the fast Fourier transform (FFT) al-
gorithms. Therefore, it is of high importance to reduce the
number of calculated CPF/HCH samples.

In this paper, we propose an efficient algorithm for the
PPS parameter estimation from the CPF and HCH. With
the calculation of only a few additional samples, we can
estimate the peak position very accurately, thus preventing
the need for oversampling. The method is based on the
dichotomous search of the spectral peak [7, 8].

Paper is organized as follows. In Section 2, a summary
of the HAF, CPF and HCH is presented. Section 3 describes
the proposed fine search algorithm, while the simulation re-
sults are given in Section 4. Conclusions are drawn in Sec-
tion 5.
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2. HAF, CPF AND HCH

2.1. PPS and HAF
The Pth order PPS is defined as

z(n) = Aed Tizo aml’ n e |:_]V_1’ ‘N_l} . (D
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where A is the amplitude, a;,i = 0, ..., P, are the phase
coefficients and NV is the signal length. Without the loss
of generality, we will assume that N is odd and that the
considered time interval is symmetric around n = 0. Our
goal is to estimate A and a;,7 = 0, ..., P, by observing z(n)
embedded in noise v(n), i.e., from the signal

y(n) = x(n) +v(n), @)

where v(n) is zero mean white Gaussian noise with vari-
ance o2. The SNR is defined as SNR = 201og;,(4/0).

The auto-correlation or the phase-differentiation (PD) is
defined recursively as

PDg[n, 7] = y(n),
PDi[n, 7] = y(n+ 7)y"(n —7),

PDg[n, 7] = PDg_1[n + 7,7|PDg_4[n —7,7],  (3)

where T is the lag parameter. A single stage of the PD op-
erator reduces the phase order of x(n) by one. Therefore,
for z(n) given by (1), PDp_1[n, 7] is a complex sinusoid
whose frequency wy is related to the highest order phase
parameter ap as follows [2]:

- 2P-1plpP-17
The coefficient a p can be estimated very efficiently us-

ing the HAF which is calculated as the discrete Fourier
transform (DFT) of PDp_1[n, 7], i.e.
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Hence, the coefficient estimation is reduced to the HAF
maximization:
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ap arg max |[HAF(w)|, 6)
where ap represents the estimate of ap.

Lower order coefficients can be estimated by repeat-
ing the procedure on the signal yg(n) = y(n)eiarn”
Ideally, y4(n) is a (P — 1)-order PPS. However, in real-
ity, ap and ap are not the same and the estimation error
dap = ap — ap influences the estimation of lower order

coefficients. This is known as the error-propagation.

2.2. CPF and HCH

In the special case that 2(n) is a third-order PPS, we can
use the CPF defined as [1]

N —
2 1_‘71'

>

N—
2 l'Hnl

s 2
e~ I0m”,

CPF(n, Q) =
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In the noise-free case, the CPF peaks along the second-
order phase derivative of z(n), i.e., along 2(az + 3agn).
Coefficients as and a3 are estimated by locating maxima of
the CPF calculated at two time instants n and solving a set
of two linear equations [1]. Therefore, to estimate a3 using
the CPF, we have to perform one auto-correlation only (7),
instead of the two employed in (5). Due to the lower num-
ber of auto-correlations, the CPF results in a more accurate
estimation and lower performance threshold compared to
the HAF [1]. In addition, the CPF parameter estimates are
asymptotically optimal or near optimal at high SNR values.
For PPSs of order higher than three, the HCH is pro-
posed as follows [6]:

Ny
HCH(n, Q) = Y PDp_sln +k,7]
k=—N;

x PDp_3[n — k, T]e_j9k2,

®)

where Ny = (N —1)/2—|n|— (P —3)7. The HCH reaches
maxima at [6]

Q(n) = 27373 Plapn + 2P 37773(P — D)lap_;.
€))
Therefore, coefficients ap and ap_; can be estimated by
locating maxima of the HCH evaluated at two instants n =
0 and n = n, i.e., by using

Q) = Q)
AP = gp, P (10
. 0(0)

(1)

4P—1 = 9P=3;P=3(p _1)I’

The lower order phase coefficients are calculated from the
de-chirped signal y4(n) = y(n)e—darn’ —jap—in”""

Note that the CPF represents the special case of the
HCH obtained for P = 3 in (8).

From (8), we see that in the HCH calculation we cannot
use the FFT algorithms, but we have to calculate it using
definition. The peak maximization in the HCH domain can
be performed using the coarse and fine search approach.
The coarse search constitutes the evaluation of the HCH on
the grid of equally spaced points in interval [Qmin, Qmax]
and locating the HCH peak. The fine search consists in re-
fining the coarse search, either by oversampling the €2 do-
main around the coarse estimate or by using some maxi-
mization procedure. Since our aim is to reduce the com-
plexity of the HCH procedure, it is highly desirable to use
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some approach other than oversampling. To this end, we
propose to apply the dichotomous search on the HCH peak.
It will be shown that the HCH peak can be maximized by
using only a few HCH samples in addition to the coarse
search.

3. PROPOSED REFINEMENT APPROACH

Let us denote the coarse search estimate as €).. Instead of
oversampling the HCH spectrum around (2., we propose
to perform a dichotomous (binary) search around €2.. In a
dichotomous search, we always consider three HCH sam-
ples, one in the middle of interval and two at interval limits.
At each iteration, we narrow the considered interval to the
one limited by the middle sample and the larger of limit
samples. We calculate new middle sample and repeat the
procedure. The procedure is iterated L times.
The proposed method can be summarized as follows:

Step 1. Calculate HCH(n, 2) using (8) along the € grid
with the resolution of Af) and find the maximum
position 2, = .. The HCH value at ©2,, will
be denoted as HCHy, i.e., HCHy = HCH(n, Q,,).
Next, calculate two HCH samples at the distance of
+AQ/2 from Q,,, i.e.

HCH.; = HCH(n, Q,, + AQ/2),

Step 2. Iterate L times the following steps

AQ = AQ/2
if HCH; > HCH_ then
HCH_,; = HCHj and 2,,
else
HCH;, = HCHj and ©2,,, = Q,,, —
Set HCHy = HCH(n, Q).

—Q,, +AQ

AQ

Step 3. The final estimation is obtained as

Q=0Q,,.

3.1. Computational complexity analysis

Performing L iterations of the proposed algorithm is equiv-
alent to interpolating the € grid around €2, with 2% samples
[8]. The complexity of the proposed refinement method
equals the complexity of calculating (L + 2) HCH samples.
We can neglect division by 2 and comparison operations.
Therefore, by implementing the proposed algorithm in the
HCH maximization procedure instead of the oversampling,
the complexity will be reduced by (2% — (L + 2))U oper-
ations per maximization, where U is the number of opera-
tions required for the calculation of one HCH sample.

Table 1. Phase coefficients of three considered PPSs.

y PPS | PPS 2 PPS 3 \
ap = (374+7)A = (27+7r)A | a3 = (31+r)A
ag = (T1+71)A2 (65+T)A2 as = (57+7r)A?
az = (41+r)A3 = (39+7)A3 = (41+7)A3

— a4 = (27+T)A4 a4 = (19+T)A4
— (19+r) as = (23+7r)A°
— ag = (11+T)A6

The computational complexity of one HCH sample is
determined as follows. The calculation of PDp_3[n, 7] for
all values of n requires (P — 3)(N — 2(P — 2)7) com-
plex multiplications. Since the calculation of each term
in sum (8) requires two complex multiplications and one
complex exponential (the argument of complex exponen-
tial is not included due to its low complexity), the overall
complexity of one HCH sample is (P — 3)(N — 2(P —
2)7) + 2(N — 2|n1| — 2(P — 3)7) complex multiplica-
tions, N — 2|n;| — 2(P — 3)7 complex additions and N —
2|n1| — 2(P — 3)7 complex exponentials. Taking into ac-
count that one complex multiplication requires four real
multiplications and two real additions, and that one com-
plex addition requires two real additions, one HCH sample
requires 4PN — 87 P2 + 24P1 — 4N — 16n; real multipli-
cations, 2PN — 47 P? + 8 Pt + 127 — 12n, real additions
and 2N — 4|nq| — 4(P — 3)7 sines/cosines. In terms of
the big O notation, the complexity of one HCH samples re-
quires O(PN) real multiplications, O(PN) real additions
and O(N) sines/cosines.

4. SIMULATIONS

In this section, we study the performance of the proposed
algorithm on three different PPSs, one third-order, one fifth-
order and one sixth-order PPS. The phase coefficients are
given in Table 1. In Table 1, A represents the sampling pe-
riod and equals A = 2/(N —1). The number r represents a
random number with uniform distribution in interval [0, 1].
In each simulation trial, 7 takes different value for each con-
sidered coefficient.

Signals PPS 1, PPS 2 and PPS 3 are embedded in zero-
mean white Gaussian noise with variance 0. The total
number of samples of each signal is N = 1001. The pa-
rameters are estimated by the HAF, the HCH with over-
sampling and the HCH with the dichotomous search. A
coarse search in the HCH is performed over the interval
[—300, 300] with the resolution of A2, = 1. The oversam-
pling is done with 1 (no oversampling - coarse search), 10
and 30 samples around the coarse estimate. The dichoto-
mous search refinement is performed in L = 5 iterations.
In the calculation of the HAF and HCH, lags are chosen fol-
lowing instructions from [2] and [6], respectively. The CPF
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Fig. 1. MSE and Cramer-Rao lower bound (CRLB) versus noise variance o2, Left column: MSE in the estimation of as and az of PPS
1; Middle column: MSE in the estimation of a5 and a4 of PPS 2; Right column: MSE in the estimation of as and as of PPS 3.

is considered as a special case of the HCH according to (7)
and (8) and is used in the estimation of PPS 1. In the HAF-
based method, estimates are refined using the oversampling
approach with 256 samples around the coarse estimate.

The obtained MSE curves are shown in Fig. 1. The
MSE values are obtained over 200 Monte Carlo simula-
tions. The left two subplots correspond to the estimation
of coefficients ag and as of PPS 1, the middle two subplots
to coefficients a5 and a4 of PPS 2, and the right two sub-
plots correspond to the estimation of coefficients ag and as
of PPS 3. In other words, we presented results obtained for
the highest two coefficients of the considered signals.

For all the considered coefficients, the least accurate re-
sults are obtained using the coarse search. On the other
hand, the oversampling with 30 samples and dichotomous
search with L = 5 iterations perform approximately the
same and give the best results. However, the dichotomous
search is characterized by more than four times lower com-
plexity. In addition, the oversampling method is character-
ized by fixed error at high SNRs, which is not the case for
the dichotomous search. The oversampling with 10 samples
has approximately the same complexity as the dichotomous
search with L = b5 iterations, but also has worse perfor-
mance.

Note that the proposed refinement achieves the accuracy
bounds in the estimation of coefficients as and ay of PPS 1

as given in Table I in [1].

Finally, the proposed method outperforms the HAF-
based method in terms of both the accuracy and threshold.
The difference in accuracy is more pronounced with higher
PPS orders.

5. CONCLUSIONS

The CPF and its extension the HCH outperform the HAF in
accuracy and SNR threshold. However, as opposed to the
HAPF, the calculation of the CPF/HCH cannot be facilitated
by the FFT routine. Therefore, it is highly desirable to re-
duce the number of CPF/HCH samples required for the pre-
cise estimation of the PPS parameters. We proposed to per-
form the fine parameter estimation through the maximiza-
tion of the CPF/HCH peak using the dichotomous search.
We showed that only several additional CPF/HCH samples
are needed to obtain a desirable accuracy. This way, we do
not have to use time consuming techniques such as over-
sampling or the ML approach.
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