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ABSTRACT

The algorithm proposed in this paper allows to segment the
optic disc from a fundus image. The goal is to facilitate the
early detection of certain pathologies and to fully automate
the process so as to avoid specialist intervention. The method
used for the extraction of the optic disc contour is based on
a variant of the watershed transformation, the stochastic wa-
tershed. A principal component analysis (PCA) and a pre-
vious pre-processing, focused on mathematical morphology,
are performed in order to prepare the image for segmenta-
tion. The purpose of using PCA is to obtain the grey-scale
image that better represents the original RGB image. The im-
plemented algorithm has been validated on a public database
obtaining promising results.

Index Terms— Optic disc, optic nerve head, stochastic
watershed, principal component analysis

1. INTRODUCTION

Optic disc (OD) detection is a key process in many algorithms
designed for the automatic extraction of anatomical ocular
structures and the detection of retinal lesions. Its automatic
location would provide useful information to determine re-
gions of interest in a fundus image, as well as for the early
detection of certain pathologies. For example, it is directly
related to diseases such as glaucoma and knowing its location
would also help to reduce the number of false positives in the
detection of exudates associated with diabetic retinopathy.

In general, the techniques presented in the literature about
the OD processing from fundus images can be grouped into
two categories: location and segmentation methods. Location
methods are based on finding the OD center and segmenta-
tion algorithms on estimating its contour. Location methods
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are usually focused on the fact that all retinal vessels origi-
nate from the OD and follow a parabolic path [1, 2] or that
the OD is the brightest component on the fundus [3, 4].
Among segmentation methods, several approaches must be
stressed: templated-based algorithms [5, 6], deformable mod-
els [7, 8] and morphological techniques [9, 10]. Most of
algorithms based on mathematical morphology detect the
OD by means of watershed transformation, generally through
marker-controlled watershed, although each author proposes
the use of different markers.

The method presented in this paper incorporates some of
the aforementioned techniques besides new contributions. It
is mainly based on watershed transformation with markers,
in the same way that in [9, 10], although with certain im-
provements: First, a principal component analysis (PCA) is
applied on the RGB fundus image obtaining a grey image in
which the different structures of the retina, such as vessels
and OD, are differentiated more clearly in order to get a more
accurate detection of the OD. This stage is very important
since it largely determines the final result. Then, the vessels
are removed through morphological operations to make the
segmentation task easier. Finally, the required markers are
randomly selected, instead of using controlled markers, and a
variant of the watershed transformation, the stochastic water-
shed transformation, is implemented. This algorithm is fully
automatic, so the process is sped up and user intervention is
avoided making it completely transparent.

The paper is organized as follows: in Section 2 the main
stages of the proposed method are described, including the
principal component analysis, the morphological operations
performed as well as the stochastic watershed transformation.
Section 3 shows the experimental results and the validation
obtained using a public database. Finally, Section 4 provides
conclusions, discussion and some future work lines.

2. METHOD

In this paper, an automatic method to detect the optic disc is
presented. It is focused on using stochastic watershed trans-
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formation on a fundus image to obtain the optic disc contour.
Previously, a pre-processing of the original RGB image is re-
quired. The first step of the pre-processing consists of ap-
plying PCA to transform the input image to grey scale. This
technique combines the most significant information of the
three components RGB in a single image so that it is a more
appropriate input to the segmentation method.

2.1. PCA algorithm

Generally, an initial grey image is necessary to carry out most
of the segmentation algorithms of the literature. However, in
the case of the OD segmentation, each author considers ap-
propriate a different intensity image, from a band of the orig-
inal RGB image [6, 9] to a component of the other colour
space [7]. In this work, the use of a new grey-scale image is
proposed. Specifically, it is calculated by means of PCA [11].
This type of analysis maximizes the separation of the differ-
ent objects that compose the image so that the structures of
the retina are better appreciated. In addition, it is much less
sensitive to the existing variability in a fundus image regard-
ing colour, intensity, etc.

For a RGB image f(x) = (fR(x), fG(x), fB(x)), the re-
sult of the PCA algorithm is a new image defined as

g = α′f = αRfR + αGfG + αBfB (1)

where αR, αG and αB are each element of the eigenvector as-
sociated with the largest eigenvalue of the covariance matrix

Σ =

 σ2
R σRG σRB

σRG σ2
G σGB

σRB σGB σ2
B

 , (2)

being the elements of this matrix the empiric covariance of
the RGB components of f .

This new image g must contain the most structural con-
trast and information of the three original channels. There-
fore, it must be proved that the largest eigenvalue represents
a 90% of the total sum of eigenvalues.

Fig. 1(a) shows an original fundus image and Fig. 1(b)
its grey-scale image obtained by PCA. Note that the whole
image is processed although only a region of interest is shown
for better visualisation.

2.2. Mathematical morphology

Mathematical morphology [12] is a non-linear image process-
ing methodology based on minimum and maximum opera-
tions whose aim is to extract relevant structures of an image.

By applying a morphological closing on the grey-scale
image obtained by the PCA algorithm, the blood vessels that
are within the OD are removed, which facilitates its detection,
as seen in Fig. 1(c). A circular structuring element is used in
that operation whose radius must be bigger than the radius of
the largest vessel, for example in a 600x400 image the chosen

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Different stages of the proposed method: (a) Origi-
nal image, (b) Gray-scale image obtained by PCA, (c) Mor-
phological closing, (d) Gradient image, (e) Probability den-
sity function of contours using 5 simulations and 50 internal
markers, (f) Internal and external markers, (g) Stochastic wa-
tershed regions, (h) Stochastic watershed contour and (i) Cir-
cular approximation.

radius was 7. After that, applying a threshold is easier. This
threshold is calculated based on a percentage of the brightest
pixels of the image. Specifically, the region will be formed
by the lightest zone of the image whose area is a 3% of the
total area of the image (this is the average percentage usually
occupied by the OD on a fundus image). The result of this
thresholding is a binary image whose largest object will be a
part of the OD. Then, a series of markers are generated using
this object, which will be useful when the watershed transfor-
mation is applied in order to regenerate the complete contour
of the OD.

2.3. Stochastic watershed transformation

The watershed transformation [12] is a segmentation tech-
nique for grey-scale images. This algorithm is a powerful
segmentation method whenever the minima of the image rep-
resent the objects of interest and the maxima are the separa-
tion boundaries between objects. Due to this fact, the input
image of this method is usually a gradient image (Fig. 1(d)).
In mathematical morphology, the gradient %(f)(x) of an im-
age f(x) is obtained as the pointwise difference between a
unitary dilation and a unitary erosion, i.e.,
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%(f)(x) = δB(f)(x)− εB(f)(x). (3)

However, one problem of this technique is the over-
segmentation, which is caused by the existence of numerous
local minima in the image normally due to the presence of
noise. One solution to this problem is using markers, which
artificially indicate the minima of the image. Although the
controversial issue consists in determining the markers for
each region of interest. Note that the use of few markers along
with the existence of borders within the OD can also cause
that some parts of it are not detected (sub-segmentation).
Therefore, the choice of the correct markers is crucial for the
effectiveness and robustness of the algorithm.

A watershed transformation variant is used to solve this
conflict, the stochastic watershed [13]. In this transforma-
tion, a given number M of marker-controlled-watershed re-
alizations are performed selecting N random markers in or-
der to estimate a probability density function (pdf ) of im-
age contours and filter out non significant fluctuations (Fig.
1(e)). Let {fmrki}

M
i=1 be M sets of N random markers and

WSi = WS(%)fmrk i the ith output image of the marker-
controlled watershed imposed by fmrki. The pdf of image
contours is computed by Parzen window method [14] as fol-
lows

pdf(x) =
1

M

M∑
i=1

(WSi(x) ∗G(x; s)) (4)

where G(x; s) represents a Gaussian kernel of variance σ2

and mean µ (µ = 0)

G(x; s) =
1

2πσ2
e
−
(
‖x‖2

2σ2

)
. (5)

Despite using random markers, a restriction on the ran-
domness of these markers is imposed to avoid segmenting
unwanted regions of the fundus. First, a number N of uni-
form random markers are generated within of the thresholded
region mentioned above. Secondly, the number of valid mark-
ers is limited to those which are situated in pixels whose in-
tensity is similar to the intensity of an initial seed belonging
to the object to be segmented. It is due to the fact that some
of them can not be located in an appropriate place because
this region can contain pixels out of the OD. So that, only the
markers situated in the most intense pixels, which ensures that
they are located within the OD, are taking into account. In our
case, the chosen seed x0 is the geodesic center of the largest
object selected. More precisely, the algorithm to generate an
image, fout(x), which contains non-uniform pseudo-random
markers from an initial image, f(x), is as follows:

1. Initialize the output image: fout(x) = 0.

2. Consider that f(x) follows a Gaussian distribution:

F (x) = e
−
(
f(x)−f(x0)

σ′

)2

, where σ′2 is equal to the vari-

ance of the largest object region multiplied by a toler-
ance value obtained experimentally, i.e., σ′2 = t · σ2

with t = 10.

3. Compute cumulative distribution function:

cdf(xi) =

∑
k≤i

F (xk)

P∑
k=1

F (xk)

, being P the number of pixels

of f(x).

4. GenerateN uniform random markers, r = (r1, ..., rN ).

5. for j = 1 to N

6. Find the smallest value sj such that rj ≤ cdf(xsj ).

7. fout(xsj ) = 1.

On the other hand, in the marker definition not only in-
ternal markers (that specify what is the object of interest) are
needed, but also an external marker which limits the area to
be segmented. The internal markers will be pseudo-random
markers generated as explained up above, and the chosen ex-
ternal marker will be a circle centred on the geodesic center
of the largest object whose radius is equal to two times the
radius of this area. See Fig. 1(f).

Obtaining a pdf of the contours of the watershed regions
facilitates the final segmentation, providing robustness and
reliability since the arbitrariness in choosing the markers is
avoided. Afterwards, the pdf can be combined with the ini-
tial gradient in order to reinforce the gradient contours which
have a high probability resulting a probabilistic gradient [13],

ρ(x) = (1− λ)%(f)(x) + λpdf(x) (6)

with λ = 0.5 the results are in general satisfactory.
Finally, a last marker-controlled watershed is applied to

ρ(x) using a new set of non-uniform pseudo-random mark-
ers. The final OD-segmentation is obtained as the union of all
watershed regions of this transformation.

2.4. Circular approximation

Once the region of interest has been obtained by the water-
shed transformation, the result must be adjusted to eliminate
false contours, which are detected due generally to the blood
vessels that pass through the OD. The morphological closing
was initially performed to remove them, as previously men-
tioned, although it is not enough because some irregularities
can still be appreciated in the watershed contour (Fig. 1(h)).

In the literature, a final OD approximation is usually done
through ellipses or circles. In our work, we have adjusted the
OD by a circle because this algorithm will later be used to
establish a zone of the retina concentric to the OD to perform
retinal vessel diameter measurements according to a stan-
dard protocol [15]. The fit is performed by means of Kasa’s
method [16] which lets calculate the center and the radius of
the circle that better is adapted to a binary region through least
squares. Fig. 1(g) shows the different regions obtained by the
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stochastic watershed transformation, Fig. 1(h) its contour and
Fig. 1(i) its circular approximation.

3. RESULTS

The validation of the method has been carried out on the pub-
lic database DRIONS [17]. In DRIONS database 110 fun-
dus images are included with their OD manually segmented
by two different specialists. Because of the OD selected by
the specialists lacked of circular shape, the same circular ap-
proximation applied to our results has also been performed
on the manual segmentations. The first observer images have
been taken as reference (gold standard) to calculate similar-
ity degree between them and our segmentation. Moreover,
the segmented images by the second observer have also been
compared with the gold standard to obtain inter-expert differ-
ences.

The performance of the method has been evaluated based
on five concepts. Jaccard’s (JC) and Dice’s (S) coefficients
describe similarity degree between two compared elements
being equal to 1 when segmentation is perfect. Accuracy (Ac)
is determined by the sum of correctly classified pixels as OD
and non-OD divided by the total number of pixels in the im-
age. True positive fraction (TPF) is established by dividing
the correctly classified pixels as OD by the total number of
OD pixels in the gold standard. Finally, false positive fraction
(FPF) is calculated by dividing the misclassified pixels as OD
by the total number of non-OD pixels in the gold standard. In
Table 1 these results can be observed. In summary, the aver-
age values obtained are: JC=0.7783, S=0.8579, Ac=0.9901,
TPF=0.8064, FPF=0.0021. In this table our results can be
compared with the 2nd observer results as well as the results
obtained by the implementation of other existing technique
based on marker-controlled-watershed transformation [9].

Table 1. Comparison between the results of the proposed
method, 2nd observer and other marker-controlled-watershed
algorithm (average values and standard deviations) regarding
the gold standard.

Proposed method 2nd observer Walter et al. [9]
JC 0.8120 (0.2055) 0.8876 (0.0349) 0.5990 (0.3506)
S 0.8774 (0.1718) 0.9401 (0.0207) 0.6683 (0.3756)

Ac 0.9921 (0.0100) 0.9948 (0.0016) 0.9659 (0.0507)
TPF 0.8689 (0.1955) 0.9316 (0.0452) 0.6602 (0.3874)
FPF 0.0034 (0.0062) 0.0023 (0.0010) 0.0226 (0.0423)

4. CONCLUSION AND DISCUSSION

From a fundus image, the implemented algorithm is able to
automatically locate the OD. This method tries to make easier
the early detection of diseases related to the fundus. More-

over, it has been validated on a public database obtaining
promising results.

The main advantage is the full automation of the algo-
rithm. It does not require any intervention by clinicians,
which releases necessary resources (specialists) and reduces
the consultation time. For those reasons, its use in primary
care is facilitated.

Variability between fundus images in colour, intensity,
size, presence of artefacts, etc. makes each state-of-the-art
method uses a different input image: the green [6] and red
[9, 10] band of the original RGB image, a combination of
both of them [5], or the intensity component extracted from
the HSI representation [7], among others. However, due to
this fundus image variability, they do not always provided
the desired results, therefore a PCA, able to maximize the
separation between the different objects of the image, has
been proposed in this paper as input image more appropriate.
PCA has already been used as a starting point for segmenta-
tion, tracking or detection in image processing [18, 19]. In
Fig. 2, PCA is compared with the use of the red component
on a specific image. It can be observed that while the red
component is completely over-saturated, PCA obtains a grey
image where the OD could be segmented.

(a) (b) (c)

Fig. 2. Advantadges of PCA: (a) Original RGB fundus image,
(b) Red component and (c) Image obtained by PCA.

On the other hand, improvements achieved by the stochas-
tic variant in relation to other marker-controlled watershed
must also be highlighted. The use of several simulations
with random markers helps to avoid sub-segmentation prob-
lems, as occurs in Fig. 3 where the original image, shown
in Fig. 1(a), has been segmented as [9] using only one inter-
nal marker located in the geodesic center of its largest and
brightest object.

Due to the complexity of the fundus images, their high
number of elements makes a perfect segmentation difficult.
That is the reason for which a circular approximation is ap-
plied on the segmented disc.

As for future lines, the optic cup will also be detected. Its
goal will be to measure the cup-to-disc (C/D) ratio so that it
can be used for glaucoma diagnosis. A high C/D ratio will
indicate that a fundus is suspicious of glaucoma.
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(a) (b) (c)

Fig. 3. Sub-segmentation problem produced in other
marker-controlled-watershed method: (a) Internal and exter-
nal marker, (b) Marker-controlled-watershed region, and (c)
Contour of watershed region in black and its circular approx-
imation in white.
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