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ABSTRACT

Quantification of sub cellular structures is necessary in un-
derstanding how cells function. This paper presents a seg-
mentation algorithm for transmission electron microscopy
images of insulin granule membranes from beta cells of rat
islet of Langerhans. Granules are described as having a dense
core and a surrounding halo. We use a mixed vector field
convolution snake to segment the granule membranes. We
also present a novel contribution to the convergence filter fa-
mily, which uses an adjustable region of support. The filter
is used to verify our segmentation. We calculate pixel error
by comparing the membrane areas from our method with a
manually defined ground truth. 1300 granules are used in our
test and an average area difference of 7.54% is observed.

Index Terms— Transmission electron microscopy, conver-
gence filters, granule segmentation, image processing.

1. INTRODUCTION

Electron microscopes have allowed researchers to observe
sub cellular structures at high resolution. With this detail, ac-
curate quantitative analysis may be performed. This allows
cellular processes to be described numerically, and eventually
leads to better understanding and prediction of cellular func-
tions. It is common for researchers to manually analyze these
images to get quantitative information. This can lead to hu-
man error, bias, irreproducibility and it is also slow.

Insulin is vital for life, being the only hormone in mammals
able to lower blood glucose levels. Disbalance of insulin lev-
els may result in diabetes. The hormone is secreted by beta
cells inside islets of Langerhans of the pancreas. After its
biosynthesis, insulin is processed and packaged in granules.
Typically, insulin granules are described as organelles con-
taining a dense core, surrounded by a halo and an enclosing
membrane. Not all granules have this surrounding halo, this
being very much dependent on the fixation procedure. In this
work, transmission electron microscopy (TEM) images of rat
beta cells have been acquired to examine the physical dimen-
sions of their insulin granule membranes. This work is an
extension to our work done in [1], where we present an al-
gorithm for granule core segmentation. In high-throughput

screening image analysis, image segmentation is the most
critical step [2].

A number of approaches for microscopy cell segmentation
have been previously described. Normally image threshold-
ing methods, for example Otsu’s [3], are used for segmenta-
tion. Methods based on watershed transforms [4] and multi-
scale products [5] have also been proposed. Beta islet TEM
images however have many complex structures present and
none of these methods is readily applicable to granule mem-
brane segmentation. Recently, an automated method dedi-
cated for the analysis of insulin granules was developed [6].
It was developed for a specific (expensive) software pack-
age; Definiens. This methodology should be open source.
We present a segmentation algorithm specifically tailored for
granule membranes. A mixed vector field convolution (VFC)
external force is introduced for a parametric active contour
model. The mixed force is designed to attract the contour
towards the granule membrane. It also contains a repulsive
force to prevent the contour from settling inside the granule
core. Each active contour is initialized using the granule core,
which was segmented using the method presented in [1]. For
some granules the membrane is at the core, hence they do not
have a halo. In order to validate our segmentation from the
mixed VFC, we developed an adjustable sliding band filter.
The filter detects the amount a convergence for a given point
within a defined region of support. If the membrane is seg-
mented correctly, its gradient flow will converge towards its
center.

The reminder of the paper is described as follows: Section
2 reviews the VFC force and describes our adjustable sliding
band filter. In Section 3 we present our membrane segmen-
tation algorithm. We validate our approach in Section 4 and
conclude in Section 5.

2. THEORETICAL PRELIMINARIES

The TEM image, along with the core segmentations and an
image of the TEM segmented by a level set active contour
(BW ) — both presented in [1]— are used as inputs for the
algorithm. The membrane segmentation algorithm proceeds
through the following steps: morphological operations, sam-
pling, VFC snake and verification (Fig. 1).
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2.1. Vector Field Convolution

Active contours are often used in image segmentation meth-
ods; they are based on partial differential equations. The ba-
sic idea in active contour segmentation models is to evolve a
curve, subject to constraints from a given image, in order to
detect objects in that image. In [7] contours are represented
by a parametric curve, c(s) = [x(s), y(s)]T ; s =∈ [0, 1]. The
curve will deform through the image, to minimize the follow-
ing energy functional [8]:

Eac =

ˆ 1

0

[
1

2
(α |c′(s)|2 + β |c′′(s)|2) + Eext(c(s))]ds. (1)

The two constants α and β are weighting parameters,
which represent the amount of smoothness and tautness of
the contour, respectively. The term with α and β represent
the internal energy of the contour. Eext denotes the external
energy; this is determined by image features. VFC snakes are
a class of parametric snakes which use the VFC force as the
external force for the contour. This external force is calcu-
lated by convolving each component of a discrete vector field
kernel with an edge map. The vector field kernel is defined as
follows,

k(x, y) = m(x, y)n(x, y), (2)

where m(x, y) is the magnitude of the vector at (x, y) and
n(x, y) is the unit vector pointing to the kernel origin (0, 0),
n(x, y) = [− x

rac
,− y

rac
], rac =

√
(x2 + y2). At the origin

where rac = 0, n(0, 0) = [0, 0]. This type of kernel has
the property that a free particle placed in the field will move
towards the origin. The value of m(x, y) should always be
positive and decreasing farther away from the origin. The
magnitude function used is described as,

m(x, y) = (rac + εac)
−γ (3)

γ is a positive constant used to control the decrease and εac
is a small positive constant to prevent division by zero at the
origin [7].

The external VFC force, fvfc(x, y) can be calculated by
convolving the discrete vector field kernel with the image
edge map, fedge(x, y). At the minima of (1), the contour must
satisfy the Euler-Lagrange equation:

αc′′ − βc′′′′ −∇Eext(c) = 0. (4)

Where αc′′ − βc′′′′ is the internal force to control the contour
smoothness and tautness, and fvfc(c) = −∇Eext(c) is the
external force that attracts the contour toward the features of
interest. In order to solve (4), c(s) is treated as a function of
time t. The solution is obtained at the steady state solution of
the gradient descent equation below:

∂c(s, t)

∂t
= αc′′(s, t)− βc′′′′(s, t) + fvfc(c(s, t)). (5)

Fig. 1: Flow chart displaying the granule membrane segmen-
tation algorithm using a section of a TEM image.

A solution to (5) can be reached by solving a discretization
of s iteratively using a finite difference approach [7]. Since
edges on the edge map have the largest values, they will con-
tribute more to fvfc(x, y) than homogeneous regions, there-
fore the contour will be more attracted towards the edges of
the image.

2.2. Adjustable Sliding Band Filter

The sliding band filter is part of the family of convergence fil-
ters, which evaluate the degree of convergence of the gradient
vectors within its region of support toward a pixel of interest.
The degree of convergence is related to the distribution of the
directions of the gradient vectors and not to their magnitudes.
The convergence index of a gradient vector at a given pixel is
defined as the cosine of its orientation with respect to the line
connecting the pixel and the pixel of interest,

Cconv(x, y) =
1

M

∑
(k,l)∈R

cosθ(k, l). (6)

M is the number of points in the filter support region R, θ
is the angle between the gradient vector calculated at point
(k, l) and the direction of the line that connects points (x, y)
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Fig. 2: Segmentation using VFC force from sampled mem-
brane only and mixed VFC force, left and right respectively.

and (k, l). Several different convergence filters have been pro-
posed: coin filters, iris filters, adaptive ring filters and sliding
band filters [9], [10] and [11] respectively. The sliding band
filter, [11], [12] has a support region formed by a band of
fixed width, whose position is changed in each direction to al-
low the maximization of the convergence index at each point.
Having an annulus shaped support region allows the sliding
band filter to detect convex shapes. In our algorithm, the outer
radius of the region of support for the sliding band filter would
correspond to the farthest membrane point from the center of
the membrane, while the inner radius would correspond to
the nearest membrane point. While this is sufficient for gran-
ules with a circular halo, granules with an elliptical or other
non circular halo would have an unnecessarily large region of
support. The proposed improvement allows for a more flexi-
ble region of support R. R can now be defined as any closed
contour. This allows for more flexibility, depending on the
application. The improved sliding band filter is defined as:

SBFadj(x, y) =
1
N

∑N
z=1

max( 1
d+1

∑r+( d
2 )

q=r−( d
2 )
CI(z, q)), Rzmin ≤ r ≤ Rzmax (7)

where

CI(z, q) = cos(θz − αcf (θz, q))

θz =
2π

N
(z − 1)

αcf (θz, q) = arctan(
dI(θz,q)
dx

dI(θz,q)
dy

).

and I is the intensity (TEM) image, N is the number of sup-
port region lines (to sample R) that irradiate from (x,y), d is
the band width, r is the position of the band in a line that
varies from Rzmin to Rzmax and CI is the cosine of the angle
between the direction that is currently being analyzed θz and
the image gradient vector direction at location (θz, q). Gener-
ally, images are redundant, hence the average of the conver-
gence indices on N support region lines can be used to rep-
resent Cconv if N is sufficiently large [9]. Rzmin and Rzmax

Fig. 3: Support region schematics for adjustable SBF (left),
for granule on right.

represents the length of the closest and farthest points to (x, y)
along support line z respectively.

3. MEMBRANE SEGMENTATION ALGORITHM

The halo segmentation algorithm uses the black and white re-
sult, (BW ) of the level set active contour and the core seg-
mentations from [1]. The proposed algorithm for granule halo
extraction is outlined in Fig. 1. In order to segment the mem-
brane the core is removed from BW , but first dilated by a
small amount to ensure that all of the core is removed. Mor-
phological thinning is then applied to BW , to thin the mem-
brane. The granule membrane is then sampled, by project-
ing outwards from the center of the core until the first non
zero pixel is found. This is done for 360 degrees. The re-
sult is a close representation of the granule membrane but the
membrane may not be connected, due to it not always be-
ing smooth. Morphological bridging is used to connect these
disjoint pixels. Although at this point the membrane may be
fully segmented, some membranes have gaps or are incom-
plete, hence the VFC snake is used to fill in these gaps. Before
this however, the sampled points need to be scaled. Points
that make up the largest set of connected components, have
a value of 1, points in the second largest set a value of 1

2 ,
third largest 1

3 and so on. The granule membrane makes up
the majority of the sampled points, hence they are assigned
the greatest weight. Other points which are not connected to
the membrane are usually objects in the cytoplasm; they are
usually small and unconnected to each other therefore should
provide less attraction to the snake.

The contour is initialized as a circle within the membrane.
The center of the circle is taken as the average of the x and
y coordinates of all points of the sampled membrane. The
radius is taken as the distance from the center point to the
point closest to the center point. The VFC kernel distance
is chosen as the average distance of all points from the cen-
ter point. Large values are used for α and β to encourage a
regular shape of the membrane, particularly when filling in
gaps. In order to prevent the contour from moving inside the
core a mixed external field is proposed. A second external
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(a) (b) (c)

Fig. 4: Granule with elliptical membrane (a). SBF region of
support (b). SBFadj region of support (c).

force is calculated using the negative core border as an edge
map, but with the same parameters used to calculate the first
force. This produces an external force pushing the contour
away from the core. The mixed external force is as follows:
fmixed = fvfc(x, y) from sampled and scaled membrane –

if outside of core
fmixed = fvfc(x, y) from core – if inside core

3.1. Membrane Verification

We need a method to evaluate our segmentation because for
some granules the membrane is at the core, therefore there is
no halo. If under 40% of a membrane is detected, the granule
is classified as not having a halo. In order to check for this,
the segmented membrane is overlapped with BW . If more
than 40% of the membrane is overlapped, the segmentation
is kept, otherwise it is omitted. Granules where the mem-
branes are at the core, are surrounded by cytoplasm. This case
does not give a continuous smooth border, when compared to
granules with a halo. Checking the overlap of the segmen-
tation from the VFC snake and BW can sometimes lead to
a false detection of a halo. This can be the case if there are
many segmented parts of the cytoplasm surrounding the gran-
ule core provide the area for the VFC segmentation to overlap
with. As an extra measure to improve the detection accu-
racy, the improved SBF presented above is employed. The
motivation behind it is that if a granule has a surrounding
halo, that membrane’s gradient flow will converge towards
the granule’s center. Since only the areas around the granule
centers are of interest, only points within 30 pixels from the
center points were calculated. Given the result of the VFC
snake as C(x, y), the region of support for SBFadj is defined
as R = dilate(C, se) where se is a circularly structured el-
ement of diameter Dse. This creates a band in the shape of
C. The size of the region of support is determined by Dse

and hence by Rnmin and Rnmax as well. Properly segmented
halos will have a peak in the filter magnitude response image,
located around the granule centers. To evaluate the strength
of each peak the following metric was utilized:

PS =
1

p

p∑
xi=1

(SBF iadj − avg)
dist

, (8)

Fig. 5: Filter response from a section of a TEM image. Bot-
tom row shows the TEM image with filter response area indi-
cated by the dashed lines. Response using the SBF (top left),
and the response using SBFadj (top right). Notice that the
SBFadj has more uniform and focused responses for each
granule, despite the membrane shape.

where p is the number of points in which the SBFadj is cal-
culated for each core, SBF iadj is SBFadj at point xi, avg
is the average SBFadj and dist is the is distance from xi to
the center of the core. If dist < 1, dist = 1. The metric
proposed gives higher values to filter responses with a peak
in the center. Granule halo segmentations with a PS smaller
than 0.0085 are considered to be incorrect, and the membrane
is then determined to be at the core.

4. RESULTS

The TEM images used to test our algorithm were 5000×5000
pixels. Our algorithm is initially applied to five images, two
fixed chemically and three fixed using cryofixation. This cor-
responds to about 1300 granules to be processed. For the VFC
snake α = 20, β = 20, γ = 1.1 and 4t = 0.5. Within the
sliding band filter, Dse = 4 and N = 32. Fig. 2 shows the
effects of membrane segmentation using the force from the
sampled membrane alone and the mixed VFC force. Fig. 3
shows a granule with a surrounding halo and its correspond-
ing region of support for the adjustable SBF. In Fig. 4 (b),
the region of support for the SBF is shown for a granule with
an elliptical membrane (a). The region of support for the ad-
justable SBF on the same granule is shown in Fig. 4 (c), note
the larger region of support in (b). Fig. 5 demonstrates the
advantages of using the adjustable SBF against the SBF. As a
final step the same images were also manually analyzed and
the results compared with the automated analysis. In order to
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Fig. 6: Granule membrane radii distributions for a TEM im-
age of a chemically fixed Beta Islet cell. The horizontal axis
is the radii bins in µm, while the vertical axis is frequency.

Table 1: Beta islet cell granule membrane radii for 5 images,
together with manually measured values. M = Mean, SD
= Standard Deviation, CF = Chemically fixed, HPF = High
pressure fixation.

Proposed Algorithm Ground Truth
M (µm) SD(µm) M (µm) SD(µm)

CF 1 0.24207 0.08355 0.28139 0.07222
HPF 1 0.23923 0.04915 0.24254 0.04965
CF 2 0.22239 0.07707 0.24986 0.07546

HPF 2 0.16440 0.05917 0.18203 0.05166
HPF 3 0.21631 0.06350 0.21258 0.06141

check the accuracy of our algorithm we compared the aver-
age granule membrane areas, with those done manually. The
metric used to record granule sizes is a radius of a circle of
the same area as the area enclosed by the granule membrane.
Fig. 6 shows the distribution of granule membrane sizes of
the proposed algorithm and the ground truth. The average
granule membrane radii error is 7.54%. Table. 1 summarizes
our results on membrane distributions on all five images.

5. CONCLUSION

In this paper we have presented an automatic segmenta-
tion approach for the membrane of insulin granules in TEM
images of beta islet cells. Portions of the membrane are first
sampled from BW using radial projections from the granule
core centers. Gaps in the sampled membrane are filled using
the VFC snake with a mixed fvfc to prevent the contour from
settling within the core. Not all granules have a surrounding
halo. To verify our segmentation, we developed an adjus-
table sliding band filter to determine the convergence around
the possible granule membrane. The possible membrane is
also overlapped with BW to see how much the segmented
membranes match. We validated our method on a set of five
images (1300 granules). The pixel error is calculated by com-

paring the membrane areas from our method with those done
manually.
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