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ABSTRACT

Distributed target tracking in wireless sensor networks (WSN)
is an important problem, in which agreement on the tar-
get state can be achieved using particle filters with standard
consensus methods, which may take long to converge. We
propose distributed particle filtering based on belief propa-
gation (DPF-BP) consensus, a fast method for target track-
ing. According to our simulations, DPF-BP provides better
performance than DPF based on standard belief consensus
(DPF-SBC) in terms of disagreement in the network. How-
ever, in terms of root-mean square error, it can outperform
DPF-SBC only for a specific number of consensus iterations.

Index Terms— Consensus, belief propagation, dis-
tributed target tracking, particle filtering, wireless sensor
networks

1. INTRODUCTION

Distributed target tracking in wireless sensor networks (WSN)
is an important task for many applications in which a central
unit is not available. For example, in emergency situations,
such as fires or nuclear disasters, a WSN can be deployed to
detect these phenomena. Once the phenomenon is detected,
sensors start to sense their neighborhood and cooperatively
track people and assets. As sensors may not survive de-
ployment, it is important to achieve tracking in a manner
that is fully robust to sensors failures, and in such a way
that every sensor has the same knowledge of the target loca-
tion. Moreover, due to nonlinear relationships and possible
non-Gaussian uncertainties, particle filtering (PF) may be
preferred [1] over traditional methods based on Kalman fil-
tering.

Many of the methods for PF-based distributed target
tracking in WSN are based on the construction and mainte-
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nance of a communication path, such as a spanning tree or a
Hamiltonian cycle [2,3]. In [2], low-power sensors pass the
parameters of likelihood function to the high-power sensors,
which are responsible to manage the low-power nodes. In [3],
a set of uncorrelated sensor cliques is constructed, in which
slave nodes have to transmit Gaussian mixture parameters
to the master node of the clique. The master node performs
the tracking, and forward estimates to another clique. These
path-based algorithms lack robustness to failures and are
not suitable for ad-hoc sensor networks. To address these
problems, several authors have considered using average con-
sensus algorithms [4—6]. The global posterior distribution is
approximated in [4] with a Gaussian mixture, and consensus
is applied over the local parameters to compute the global
parameters. Similarly, [5] uses a Gaussian approximation
instead of Gaussian mixture. Randomized gossip consensus
was used in [6] for distributed target tracking. A common
drawback of these state-of-the-art methods is the slow con-
vergence.

In this paper, we propose a novel method for target track-
ing using distributed particle filtering (DPF) based on belief
propagation (BP) consensus. We perform simulations to ana-
lyze the performance of DPF-BP method, and compare with
DPF based on standard belief consensus (DPF-SBC), pro-
posed in [7]. According to our results, DPF-BP provides bet-
ter performance than DPF-SBC in terms of disagreement in
the network, as well as absolute accuracy, provided a specific
number of consensus iterations is used.

2. PROBLEM FORMULATION

We consider N, sensors with two-dimensional (2D) po-
sitions z, (n = 1,2,...,N) and one target with an un-
known state x; at time ¢. The state of the target is defined as
xy = [v1,4 Toy D14 G24)7, where 1, and x5, represent 2D
position of the target, and & ; and 2 ; the 2D velocity of the
target. The goal of the WSN is to estimate x; at each discrete
time (slot) t. We assume all sensors are synchronized at the
time slot level. We use the following state-space model:

Ti41 = A,It + But (1)
Yn,t = gn(xt) + Un,t, (2)
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where u; = [u1; ua,]” is the process noise due to the varia-
tion of the speed, y,, ; is the local observation of sensor n at
time ¢, and v,,  is its observation noise. The matrices A and
B are given by
T2
A— { I, T, ], B—| 3

3
i | 3

0, I

where T is the sampling interval, and I» and 0- represent
the identity and zero 2 x 2 matrices, respectively. We denote
by G the set of the nodes that have a measurement available
at time t. For the sake of concreteness, we assume that the
measurements are distance measurements to the target, ie.,
forn € Gy, gn(xi) = ||2n — [21.0 22.4]7 |-

The measurement noise v, is distributed according to
po(+), which may depend on measurement technique (e.g.,
acoustic, RSS) and the environment. The process noise u; is
distributed according to p,,(+). Finally, the sensors themselves
may not have perfect location knowledge, modeled through
an a priori distribution on their position p,(-).

For simplicity, we assume ideal probability of detection
for both sensing and communication range. That means that
a sensor can detect the target if the distance between them is
less than predefined value r, and that two sensors can com-
municate with each other if the distance between them is less
than R.

3. CENTRALIZED TARGET TRACKING

We apply the Bayesian approach for this tracking problem
and recursively determine the posterior distribution p(z¢|y1.¢)
given the prior p(z:—1|y1.4—1), dynamic model p(z¢|z:—1)
defined by (1), and the likelihood function p(y;|x;) defined
by (2). We assume that p(zo|yo) = p(zo) is initially avail-
able. The posterior can be found using the prediction and
filtering equations [1]

p(xe|yr:e—1) = /p(xt|xt71)p(xt71‘ylztfl)dxtfl 4

P(welyie) o< p(yelae)p(we|yie—1)- ©)

Assuming independence among all measurements at time ¢,
the global likelihood function p(y:|x:) can be written as the
product of the local likelihoods:

plyilee) o T plynlo). 6)

neGy

Note that p(y, ¢|z+) involves integrating out the position z,
of the n-th sensor.

Due to the non-linear measurement model, we apply a
particle filter (PF) [1], in which the posterior distribution
is represented by a set of samples (particles) with associ-
ated weights. In order to avoid degeneracy problems (i.e.,
the situation in which all but one particle have negligible
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weights), we apply the sample-importance-resampling (SIR)
method, in which the particles are drawn from p(x;|x:—1),
then weighted by the likelihood function, p(y:|z:), and finally
resampled.

When the PF is executed in one of the sensors, serving as
a fusion center, which collects all information from all sen-
sors, we refer to the PF as a centralized PF (CPF). The main
drawbacks of the CPF are: i) large energy consumption on
the nodes which are in proximity of the fusion center, ii) high
communication cost in large-scale networks; iii) the posterior
distribution cannot be accessed from any node in the network;
and iv) the fusion center has to know the locations, observa-
tions, and observation models of all the sensors. In the fol-
lowing section, we will focus on distributed implementations
of PF method, which alleviate these problems.

4. DISTRIBUTED TARGET TRACKING

Our goal is to track the target in a distributed way, such that
all the nodes have a common view of the state of the target.

4.1. Distributed Particle Filtering

For a distributed implementation of the PF, we want to avoid
exchanging measurements and to have a common set of sam-
ples and weights at every time step. If we can guarantee that
the samples at time ¢ — 1 are common, and the weights at
time ¢ are common, then common samples at time ¢ can be
generated by providing all nodes with the same seed for ran-
dom number generation, so as to ensure that their pseudo-
random generators are in the same state at all times. Ensuring
common weights for all nodes can be achieved by means of
a belief consensus (BC) algorithm (also known as likelihood
consensus [5]). BC formally aims to compute, in a distributed
fashion, the product of a number of functions over the same
variable
Ns

@) =] fal@) @

n=1

BC(fl(.’L‘),fg(.’L’), e

However, most BC algorithms are not capable to achieve ex-
act consensus in a finite number of iterations. As we require
exact consensus on the weights, we additionally apply max-
consensus [6, 8],

MC(fi(x), fa(2), ...

max
n=1,...,N

v, (@) =

which computes the exact maximum over all arguments us-
ing the same protocol as average consensus in a number of
iterations, equal to the diameter of the graph, viz., the max-
imum hop distance between any two nodes. This idea has
been already used in [6, 7] and the final algorithm is shown in
Algorithm 1.

There are different ways to perform BC. In the next two
sections we describe the standard BC (SBC) algorithm, and
our proposed BP consensus algorithm.

falx),  (®)



Algorithm 1 Distributed PF (DPF) (at node n, at time ¢)

1: for all particlesm =1 : N, do
(m)

2. Draw particle: 2™ ~ p(z,.¢|2™)
3: Compute Welght wi, m) _

BC (p(yaalai™): s p(u. laf™))
4: end for

5: Normalize: w( + = w /Zw )(form =1:N,)

m) 2(m)

6: Compute estimates: T, ; = Z Wyt Ty,

m

MC(w“ e wN t) (form =1:N,)
8: Normalize: %\™ = o{™ /Z 2™ (form =11 N,,)

7: (

9: Resample particles {aztm)}m:1 with replacement from
(e

4.2. Standard Belief Consensus
Standard BC (SBC) [9] is defined in following iterative form:

M () = MED (@) T]

ngiil) (iUt) ‘

YT I
uEN, n (xt)
where N, is the set of neighbors of node n, M,(f) represents
current estimate (at iteration ¢) of the global likelihood of the
variable z; (in our case, x; € {zgl), . (N”)}) and 0 <
€ < 1/Mmax, where npay is maximum node degree in the
network.

We initialize by M,(Ll)(xt) = p(Yn,¢|z¢), in which we as-
sumed that p(y, ¢|x;) = 1 for n ¢ G. This consensus algo-
rithm guarantees convergence (in all connected graphs) as the
number of iterations goes to infinity [9]. Thus, it asymptoti-
cally converges to the geometrical average of the local distri-
butions:

1/Ns
Jim MO( ( IT plynsler) ) .30

neGy

from which the desired quantity, [[, o, P(Yn,¢|21), can eas-

ily be found, for any value of z; € {xil), e ,xEN”)}

Note that the maximum node degree (7,,x) and number
of nodes (V) must be known or estimated at every node.

4.3. Belief Propagation Consensus

Belief propagation (BP) [10, 11] is a well-known message
passing algorithm on an undirected graphical model. Moti-
vated by its scalability, and robustness to failures, we apply it
for consensus application. Consider the following function

) I 6(ans — zu), (11

uEN,
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which is equal to [, ¢, D( ), whenever all the dummy
variables z,; take on the same value, and zero otherwise.
Running BP on the corresponding graphical model yields the
marginals My, (2, ¢) = C[],, p(yn,t|®n,.) for every n, where
C' is a normalization constant. Note that this normalization
constant is irrelevant, due to the normalization in in Algo-
rithm 1, line 5. The BP message passing equations are now as
follows: the belief at iteration ¢ (the current approximation of

CT1I, P(Un,tlzn,)) is given by [12, eq. (8)]

M( )('Tnt) (Xp(yntlxnt H m
uEN,

) (@ns),  (12)

while the message from node © € N, to node n is given
by [12, eq. (9)]

M(i—l) (xu t)

mg}%(xn,t) S8 / 5(I7z,t — T, t) de"’t
Lot Mnu (x“1t)
i—1
- M (13)
mita ) (@n,0)

We note that since all dummy variables are the same, we can
write &, = 2y, = ;. Some straightforward manipulation

yields
(i-1)
M) () M(f)(m a4
u€EN, M”Z (xt)

oc M=) (z,) H

which represents novel BC algorithm based on BP. This
method is initialized by Mﬁl)(xt) = p(Yn,i|z). We also
need to set M\”) (z¢) in order to run the algorithm defined by
(14). Using (12) and (13), and assuming that m&?(xt) =1,
we find

M (1) = p(yn,i|z1) H P(Yut|Tt). 15)

uEN,

This algorithm guarantees convergence to C' [[,, p(yn.¢|T+)
for cycle-free network graphs [11, 13]. When the network
graph has cycles, the beliefs are only approximations of the
true marginals. Comparing (14) and (9), we can see that, in
contrast to SBC, BP-consensus agrees on product of all local
evidences (not the Ng-th root of the product), and does not
rely on knowledge of n,.x and Ng,. We refer to this variant
of DPF as DPF-BP.

5. SIMULATION RESULTS

We will compare CPF, DPF-SBC, and DPF-BP methods, for
a scenario with Ny = 16 sensors semi-randomly deployed
in a 100 m x 100 m area (see Figure 2). The positions of
these sensors have an a priori circular Gaussian distribution
centered around the true position and with standard deviation
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Fig. 1. Performance comparison of DPF methods as a function of the number of iterations. (a) RMSE, R = 35m, (b) avg.
disagreement, R = 3bm, (¢) RMSE, R = 55m, and (d) avg. disagreement, R = 55m.

0.5 m in every direction. The target is moving with constant
speed of 5 m/s according to a Gaussian random walk, dur-
ing 40 time slots, each lasting 75 = 1 s. We set the sensing
radius to » = 30 m, and consider two values of communi-
cation radius (R = 35 m and R = 55 m). We assume that
the measured distance is distributed according to Gaussian
mixture with two components.! We use N, = 400 parti-
cles. For SBC, we used € = 1/npyax since it provides the
fastest convergence [9]. The results are averaged over 200
Monte Carlo runs. We consider two performance metrics:
root-mean-square error (RMSE) in the position error, and, for
DPF methods, the average disagreement in the position error,
defined as the difference between maximum and minimum
error over network.

We will first investigate the convergence as a function of

! A main component A/(Om, (0.5m)?) with probability 0.9 and an outlier
component N (5m, (0.5m)?) with probability 0.1.
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the number of iterations, for R = 35 m and R = 55 m (see
Figure 1). We draw a number of conclusions. First of all, CPF
provides the best RMSE performance, as it has access to all
observations. DPF-SBC provides better RMSE performance
than DPF-BP, as the latter algorithm is affected by the loops
in the graph, leading to biased beliefs. However, we note that
for a specific number of iterations (5 iter. for R = 35 m and 3
iter. for R = 55 m), DPF-BP outperforms DPF-SBC. In fact,
using (14), it is possible to show that after Nj; = D, +1 itera-
tions (where D, is diameter of the graph), all local likelihoods
are available at each node, while during further iterations lo-
cal likelihoods will be over-counted. Hence, at Ni; ~ D, + 1
DPF-BP achieves a good performance/delay trade-off, while
DPF-SBC reaches guaranteed convergence in both metrics,
but with a much longer delay.

In addition, we analyze DPF-SBC and DPF-BP at differ-
ent time instants for a single run. We set R = 35 m, with
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Fig. 2. Illustration of the particle clouds for: (a) DPF-SBC, and (b) DPF-BP. Sensors are marked with red squares, the true track
with black line, estimated track with dashed line, and true positions of the targets (at 4 different time instants) with X.

D, = 4 and fix Nj; = D, + 1 = 5. Therefore, it corresponds
to scenario in which DPF-BP performs the best. According
to Figure 2, we can see that the particles in DPF-BP are very
informative (smallest spread), while particles in DPF-SBC
are significantly more spread out. This is expected since we
used max-consensus before resampling in order to ensure the
same set of the particles. Since DPF-SBC converges signif-
icantly slower than DPF-BP (see Figure 1), every node may
have a significantly different set of weights. Therefore, max-
consensus over the weights will increase the amount of uncer-
tainty. Moreover, both methods are fairly robust, since for all
the methods the true position of the target is always within the
particle cloud. This is important since these particles will be
used for prediction and filtering in the next time instant (see
Algorithm 1). Finally, note that if we increase the number
of iterations, DPF-BP may provide a biased set of particles’
(with the same spread), while DPF-SBC will become more
accurate and informative.

6. CONCLUSION

We have proposed DPF-BP, a novel method for distributed
target tracking. Compared to DPF-SBC, it provides signif-
icantly faster agreement of the estimates in the networks.
It can also outperform DPF-SBC in terms of RMSE if we
choose the right number of iterations. Future work includes
online methods for estimating the optimal number of iter-
ations, and the combination of SBC and BP, which might
provide a better convergence/performance trade-off.
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