
LEAST-SQUARES DESIGN OF 2-D SPARSE NONSEPARABLE FILTER BANKS USING

TRANSFORMATION OF VARIABLES: A GREEDY APPROACH
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ABSTRACT

We present in this paper a design method for two-dimensional

two-channel sparse nonseparable FIR filter banks using trans-

formation of variables. In a first phase the transformation

function is designed in a least-squares fashion. The second

stage of the algorithm introduces the sparseness in a greedy

manner by removing at each step the minimum coefficient of

the filter in absolute value. The obtained results show that the

sparse filter banks offer the possibility of choosing the com-

plexity of the filters and have also better stopband energy.

Index Terms— 2-D, sparse, filter bank, least-squares,

greedy algorithm

1. INTRODUCTION

The problem of designing sparse filters is an issue of interest

due to the focus on reducing the number of arithmetic oper-

ations and hence the costs of the implementation. The diffi-

culty in obtaining sparsity [1] for digital filters is in maintain-

ing their frequency specifications. The question that arises is

which degrees of the filters should be left out. Setting small-

valued coefficients to zero has been addressed in [2] to de-

sign sparse FIR filters. In [3] exhaustive intelligent techniques

have been used. Efficient design using orthogonal matching

pursuit was used in [4].

In this paper we propose the design of 2-D sparse nonsep-

arable FIR filter banks (FBs) with quincunx [5] decimation

using transformation of variables. Quincunx FBs with dia-

mond passband [5] occupy a distinct place in signal process-

ing due to their applications in image and video processing.

A method for designing two-dimensional (2-D) perfect recon-

struction (PR) FBs is through transformation of variables [6],

method which allows the design of filters using polynomials

of smaller degrees, thus reducing the number of coefficients.

Successive thinning was recently used to study sparse filter

This work was supported by the Romanian National Authority for Sci-

entific Research, CNCS-UEFISCDI, project PN-II-ID-PCE-2011-3-0400.

design in one dimension [7], where the coefficients are elimi-

nated so as the increase in error is minimized. This approach

was found to be comparable with the removal of the smallest

coefficient in each step. Two-dimensional sparse filters were

designed in [8] using convex optimization. To the best of our

knowledge this is the first attempt to design sparse FBs.

Our method uses least-squares optimization (see [9] for

a 3-D non-sparse design) followed by a greedy search. The

algorithm has four stages. In the first step we optimize the

transformation function (TF) disregarding the properties of

the filters. The second step attempts to minimize the stop-

band energy through a convex optimization problem. Next,

in the third step we actually reach sparsity for the TF (which

further gives a sparse FB) using a greedy approach where the

coefficient chosen to be removed is always the minimum one.

The optional last step is a nonlinear optimization of the 1-D

filters used to build the 2-D filters.

We prove that our method gives filters with better stop-

band energy (than the non-sparse FBs) and also offers the

possibility of a complexity/performance trade-off. Another

advantage of our approach is that it allows the simple intro-

duction of regularity constraints on the filters.

2. THE FILTER BANK

We aim to design FBs like the one in Figure 1, where the

sampling is done on the quincunx lattice using the sampling

matrix D =

[

1 1
−1 1

]

. Denoting z = (z1, z2) and zk =

zk1

1 zk2

2 , the filters are 2-D real symmetric trigonometric poly-

nomials

H(z) =
n
∑

k=−n

hkz
−k, hk = h−k, (1)

where k = (k1, k2) ∈ Z
2. We associate with a trigonometric

polynomialX(z) the vector x which contains the coefficients

belonging to a halfspace.
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Fig. 1: Two-channel filter bank.

The lowpass filters are obtained using the transformation

of variables technique [10], as

H0(z) = HT (M(z))
F0(z) = FT (M(z))

(2)

where HT (Z) and FT (Z) are 1-D filters in the real variable

Z and the TF M(z) is a 2-D filter as in (1) with

mk = 0, if k1 + k2 is even. (3)

Note that in the light of (3), the support of a non-sparse TF

contains only half of the coefficients of the filter. The alias-

ing transfer function of the FB is canceled by choosing the

following highpass filters:

H1(z1, z2) = z−K1

1 z−K2

2 F0(−z1,−z2)

F1(z1, z2) = zK1

1 zK2

2 H0(−z1,−z2)
(4)

with K1 +K2 being odd.

For the purpose of illustration, we consider HT (Z) and

FT (Z) [6] of degrees two and three, respectively (generaliza-

tion is immediate), i.e. we have

H0(z) = a0 + a1M(z) + a2M(z)2

F0(z) = b0 + b1M(z) + b2M(z)2 + b3M(z)3.
(5)

Denoting DT (Z) = HT (Z)FT (Z), the PR condition is

imposed on the FB with the constraint

DT (Z) +DT (−Z) = 1. (6)

3. THE TRANSFORMATION FUNCTION

We describe in this section the method used to obtain the TF.

We denote for brevityH(ω) = H(ejω). To quantify the qual-

ity of a filter, we use the stopband energy, defined for a 2-D

filter H(z) as

Es(H(z)) ,
1

(2π)2

∫

Vs

|H(ω)|2 dω, (7)

where Vs is the stopband region. Furthermore (7) is equiv-

alent to Es(H(z)) = hT · C · h, where C = P T C̄P is

a positive definite matrix, with C̄ =
1

(2π)2

∫

Vs

C2(ω2) ⊗

6

-�
�
�
�
�
�
�@

@
@
@
@
@
@
�

�
�

�
�

�
�@

@
@

@
@

@
@

�
�
�
�
�
� @

@
@
@
@
@

�
�
�
�
�
�

@
@

@
@

@
@

ω2

?6

�-
α

α
ω1

Fig. 2: The 2-D passband.

C1(ω1) dω1dω2, Ci = Toep(ejωini , . . . , 1, . . . , e−jωini),

i = 1 : 2, andP =

[

0 1 0

J 0 I

]T

, where Toep(y0, . . . , yn)

is the Toeplitz matrix having yk on the k-th diagonal, J is

a counteridentity matrix of appropriate dimensions and the

superscript T denotes transposition. Thus, the computation

of the matrix C essentially reduces to solving the integral

I =

∫

Vs

cos (k1ω1 + k2ω2) dω1dω2. (Due to space limita-

tions we omit the computation of I .)

We quantify the width of the transition band with a pa-

rameter α, as shown in Figure 2 which presents the frequency

bands. In white we have represented the stopband.

We describe in the next sections the algorithms used to

optimize the support of the TF M(z). We denote with S the

support for the M(z) filter, i.e. the set of pairs (k1, k2) for

which mk1,k2
is nonzero. We also denote with S(CO) the

complete support in accordance with (3), i.e. the set of pairs

(k1, k2) with k1 + k2 being an odd number, and with S(CU)

the current support of M(z) at some point of the algorithm.

3.1. Non-sparse design

In the first step we optimize the TF M(z) independently of

the FB. When the variable Z goes from 0 to 1 the values of

the polynomials HT (Z) and FT (Z) grow also from 0 to 1.

Hence, in the stopband, the polynomial M̃(z) = 1 + M(z)
should approximate 0. As such, we optimize the stopband

energy using (7) and taking (3) into account, by solving the

optimization problem

m̃⋆ = min
m̃

m̃TCm̃

s.t. M̃(z) = 1 +M(z)
S = S(CU)

(8)

This is the minimization of a convex quadratic subject to

linear constraints. Denoting the equality constraints as
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Ωm̃ = γ the solution of (8) is m̃⋆ = − 1
2C

−1
Ω

T τ , with

ΩC−1
Ω

T τ = −2γ. For the non-sparse design the current

support is the complete one. Hence, we use S(CU) = S(CO).

In the second step, we aim to attain the actual optimization

purpose, which is the minimization of the stopband energy of

the filters (2), for given 1-D filters HT (Z) and FT (Z). We

solve the optimization problem

min
M(z)

Es(HT (M(z)), FT (M(z))), (9)

with Es(G1(z), G2(z)) , λEs(G1(z))+(1−λ)Es(G2(z)),
where the weight λ is known. The stopband energies that ap-

pear in (9) are nonconvex functions in the variable M(z). To

make the problem tractable, we employ the following trick.

Let M0(z) be the TF designed using (8). Since this should

be a relatively good approximation of the optimal TF, we op-

timize instead of (5) the filters from (10), which can be found

on the top of the next page. We obtain the optimization prob-

lem

m⋆ = min
M(z)

Es(H̃0(z)), F̃0(z)). (11)

This is a convex quadratic in the coefficients of M(z). The

problem (11) can be written as [9] m⋆ = min
m

mT
Θm +

2ηm, with unique solution m⋆ = −Θ−1ηT . Note that we

do not iterate problem (11) (using βM∗(z) + (1− β)M0(z),
β ∈ (0, 1] as M0(z) for the next step) because the stopband

energy does not improve.

3.2. Sparse design

In the third step we focus on designing sparse FBs by creat-

ing a sparse TF, using a modified version of (11) in a greedy

algorithm. After obtaining the non-sparse TF using (8), call

it M⋆
0 (z), we replace the minimum coefficient (in absolute

value) with zero and using this new TF we solve problem

(11) with the current support; note that introducing one zero

in the TF actually creates four zeros, due to the fact that the

filters are 4-symmetric, so the decrement step for the number

of nonzero coefficients for a filter is four. These steps are re-

peated until the size of the support is satisfactory. Note that

the optimization step with the new support does not modify

the size of the support.

Algorithm 3.1: SPARSETF(n, α,Nd)


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
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





i← 0

while Ni , nnz(m⋆
i )

a > Nd

do



























set the minimum coefficient of m⋆
i to zero

H̃i(z) , H(M(z),M⋆
i (z))

F̃i(z) , F(M(z),M⋆
i (z))

i← i + 1

m⋆
i ← argmin

M(z)

Ei , Es(H̃i−1(z), F̃i−1(z))

return (m⋆
i )

The steps of the greedy algorithm are summarized in Al-

gorithm 3.1. Nd is the maximum desired number of nonzero

coefficients for the TF. card(·) is the function that returns the

cardinal of a set and the function nnz(·) returns the number of

nonzero elements of its argument.

4. OPTIMIZATION OF THE 1-D FILTERS

In the fourth step, our results can be further improved by opti-

mizing the 1-D filters. Let M(z) be the solution of the prob-

lem (11), considered now fixed. Let a = [a0 a1 a2]
T and

b = [b0 b1 b2 b3]
T be the coefficients of the 1-D filters HT (Z)

andFT (Z), respectively, that appear in (5). Considering these

vectors as variables, we solve the optimization problem

min
a,b

Es(HT (M(z)), FT (M(z)))

s.t. (6)
(12)

Although the criterion is a convex quadratic, the constraint (6)

is bilinear, hence the problem (12) is not convex.

In order to obtain a sparse FB we use the solution of the

greedy algorithm for M(z).

5. THE REGULARITY CONDITIONS

Our method provides the possibility of easily adding regular-

ity conditions. According to e.g. [11] in order to achieve Q
order regularity for the lowpass filters one must impose S or-

der regularity on the TF M(z) and/or R order regularity on

both the 1-D filters HT (Z) and FT (Z). We describe next the

first case. (See Table 1 from [11] for the connection between

Q, S and R.)

For an order S of zero derivatives the conditions on the

filter M(z) are
∂LM(ω1,ω2)

∂ω
ℓ1

1
∂ω

ℓ2

2

∣

∣

∣

∣

ω1=ω2=π

= 0, ∀L = 1 : S,

∀ℓ1, ℓ2, ℓ1 + ℓ2 = L. We also require that M(π, π) = −1.

To design a TF, we embed the equality constraints

Υm = ζ (13)

over M(z), in the optimization problem (11). Thus we obtain

the problem

m⋆
R = min

m
mT

Θm+ 2ηm

s.t. (13)
(14)

The solution of the problem (14) is m⋆
R = −Θ−1ηT −

1
2Θ

−1
Υ

T ξ, where ΥΘ
−1

Υ
T ξ = −2ΥΘ

−1ηT − 2ζ.

In order to design sparse FBs with regularity conditions

we design a sparse TF using the Algorithm 3.1; we denote

this TF as M̂(z). Using M̂(z) we solve the optimization

problem

m̂⋆
R = min

M(z)
Es(Ĥ(z), F̂ (z))

s.t. (13)
(15)
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H̃0(z) = H(M(z),M0(z)) , a0 + a1M(z) + a2M0(z)M(z)

F̃0(z) = F(M(z),M0(z)) , b0 + b1M(z) + b2M0(z)M(z) + b3M0(z)
2M(z).

(10)

where
Ĥ(z) = H(M(z), M̂(z))

F̂ (z) = F(M(z), M̂(z)).
(16)

The 1-D filters have R order zeros in -1 if H
(i)
T (−1) =

0, F
(i)
T (−1) = 0, ∀ i = 0 : R, constraints which are equiv-

alent to imposing factors of the form (1 + Z)R+1 on the 1-D

filters [9].

6. RESULTS

We consider designing sparse FBs using a TF of degree

n = [ 7 7 ] which is a filter of size 15 × 15. We use the

following 1-D filters [6]

HT (Z) = − 1
4 (Z + 1)(Z − 3)

FT (Z) = − 1
12 (Z + 1)(Z2 + Z − 8).

(17)

(It can be easily checked that the filters from (17) sat-

isfy the PR condition (6).) We have made tests using

α = [0.10, 0.15, 0.20]π and we have considered λ = 0.5
in all cases.

We discuss first the non-sparse case. Table 1 presents a

comparison between several algorithms. Remind that (11)

and (12) represent the third and the fourth stages of our al-

gorithm, respectively. The nonlinear optimization in (12)

gives an advantage over the convex optimization problem

(11). Comparing the results provided by (11) with the win-

dow method from [11], our approach performs slightly better;

taking e.g. n = [ 7 7 ], α = 0.1π, the window method gives a

stopband energy of 0.0004294. In the problem (14) we intro-

duce the regularity constraints, reason for which the stopband

energy increases. (To solve the problem (12) we have used

the fmincon function from MATLAB.)
We analyze now sparse FBs. We denote with N the num-

ber of nonzero coefficients for a filter. The decrease of the

number of coefficients is made using Algorithm 3.1. We show

in Figure 3 a comparison for the number of nonzero coeffi-

cients between the sparse filters versus the non-sparse ones.

When comparing filters with the same number of nonzero co-

efficients one can see that the sparse filters obtained have a

smaller stopband energy than the non-sparse filters obtained

using (11), in most cases. Moreover, Algorithm 3.1 offers the

possibility of selecting the desired number of nonzero coef-

ficients for the TF. We present in Table 2 the stopband ener-

gies for different algorithms for the case of sparse filters with

α = 0.1π, starting from n = [ 7 7 ].
We discuss now several aspects of our algorithm. All the

results presented onwards use α = 0.2π. The tests start with

a non-sparse TF of degree n = [ 7 7 ], i.e. S(CO) = 112, and

stop when reaching N = 80.

We note that in Algorithm 3.1, we do not re-optimize

the new TF with (8), before re-optimizing the stopband en-

ergy Ei with the new support. The reason is because re-

optimizing with (8) produces higher stopband energies than

our algorithm. Applying Algorithm 3.1 we have obtained

E8 = 0.0000176, while introducing the optimization with (8)

would give E8 = 0.0000408.

We stress now the importance of the greedy approach.

Our algorithm sets the minimum coefficient to zero in each

step, hence after i steps we have removed i unique coeffi-

cients. On the other hand, if we were to remove the first

i smallest coefficients the results would be less satisfying.

As an example, removing the 8 smallest (unique) coeffi-

cients from the start, would give a stopband energy equal to

0.0000258.

Another variant of our approach would be to remove at

each step the coefficient that gives the highest stopband en-

ergy if kept. The drawback of such an approach is that it is

much too slow, the search for the right element to remove be-

ing of complexity O(n2) rather than just O(n), which is the

case of removing the minimum coefficient, where we have

considered n to be the total number of coefficients of the fil-

ter. As such, while running Algorithm 3.1 takes about 12 min-

utes, the minimum stopband energy algorithm takes roughly

6 hours on a PC with Intel Core 2 Duo at 2.33 GHz and 2

GB of RAM. Moreover, the improvement over the minimum

coefficient algorithm is insignificant; with this approach we

have obtained a stopband energy of 0.0000175.

7. CONCLUSIONS

We have proposed a new method for designing 2-D sparse

FBs with a diamond passband with the aid of transformation

of variables. Our approach reduces the initial problem to de-

signing filters with minimum stopband energy. The sparse-

ness of the filters is obtained in a greedy fashion by removing

at each step the minimum coefficient (in absolute value) and

therefore controlling the complexity of the filters. The sparse

filters thus obtained offer FBs with smaller stopband energy

than the non-sparse FBs with the same number of nonzero

coefficients. Furthermore, using our method one can easily

introduce regularity constraints in the design problem.
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