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1Program of Electrical Engineering

Federal University of Rio de Janeiro

Rio de Janeiro, Brazil

email: catia@valdman.com, mcampos@ieee.org

2Department of Electrical Engineering

Instituto Militar de Engenharia

Rio de Janeiro, Brazil

email: apolin@ime.eb.br

ABSTRACT

In this paper a geometrical stopping criterion for the Least

Angle Regression (LAR) algorithm is proposed based on the

angles between each coefficient data vector and the residual

error. Taking into account the most correlated coefficients one

by one, the LAR algorithm can be interrupted to estimate a

given number of non-zero coefficients. However, if the num-

ber of coefficients is not known a priori, defining when to

stop the LAR algorithm is an important issue, specially when

the number of coefficients is large and the system is sparse.

The proposed scheme is validated employing the LAR algo-

rithm with a Volterra filter to identify nonlinear systems of

third and fifth orders. Results are compared with three other

criteria: Akaike Information, Schwarz’s Bayesian Informa-

tion, and Mallows Cp.

1. INTRODUCTION

The Least Angle Regression (LAR) algorithm was first de-

veloped by Efron et al [1]. The LAR algorithm heuristically

fits sparse models as a greedy stepwise algorithm [2]. The

algorithm constructs a sparse solution to a given problem by

iteratively building an approximation, which is even more ap-

propriate for large-scale problems [2]. It was already used

successfully in several applications, as, for example, in [3]

and [4].

Nonlinear system models are used in many areas, such

as communication systems, power amplifiers, loudspeakers

with harmonic distortion, and others [5]. The Volterra filter

is commonly used to identify nonlinear systems, being a non-

linear filter that may be composed by an infinite number of

coefficients [6]. For this reason, standard approaches tend to

limit the order of the filter to its second-order, avoiding a large

number of coefficients. For example, that was the case when

the Volterra filter was used to model nonlinear acoustic echo

paths [7] and to identify nonlinear systems [8].

In [9], the authors concluded that by using the LAR algo-

rithm with a Volterra filter, it was possible to identify the most

relevant coefficients in nonlinear system modeling, allowing

the use of filters with higher orders. Based on the known

number of coefficients, the LAR algorithm was interrupted

and the correct coefficients were estimated, independently of

its Volterra kernel. In this paper, we suppose that the number

of non-zero coefficients is not known and the algorithm must

be interrupted when the number of coefficients estimated is

somehow sufficient; for this task, a geometrical criterion to

stop the LAR algorithm is proposed.

Recently, Elad [10] pointed out that the main problem of

the LAR algorithm is the tendency to give too many non-zero

coefficients. If the algorithm is interrupted when the correct

number of non-zero coefficients have been calculated, this

problem could be overcome.

Donoho and Tsaig [2] developed a criterion for the Ho-

motopy algorithm, which they called k-step solution prop-

erty, to be used for under-determined systems. We propose a

geometrical criterion to be used in over-determined systems.

In order to validate the proposition, we identified nonlinear

systems with Volterra filters using the LAR algorithm. We

compared performances when the number of nonzero coef-

ficients is known with those when adopting the geometrical

criterion based on standard deviation, Mallows Cp, Akaike,

and Schwarz’s Bayesian criteria.

This paper is organized as follows. Section 2 reviews the

LAR algorithm; thereafter, a geometrical criterion based on

the angles between each coefficient data vector and the resid-

ual error is addressed. The proposed criterion is tested in sim-

ulated scenarios, where nonlinear systems were identified us-

ing the LAR algorithm and Volterra filters; results are shown

in Section 3. Conclusions follow in Section 4.

2. THE GEOMETRICAL STOPPING CRITERION

FOR THE LAR ALGORITHM

Before developing the geometrical stopping criterion, the

LAR algorithm will be briefly reviewed in order to standard-

ize terminology and nomenclature.

2.1. The LAR Algorithm

After the LAR algorithm was introduced in 2004 [1], several

studies were carried out, as can be seen, for example, in [2],

[10] and [11].
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If the nomenclature used is not well defined, the LAR al-

gorithm can be quite confusing. Therefore, we will first es-

tablish some main equations, being as close as possible to the

ones used in the field of signal processing.

The input data vector (J × 1) is defined as

x(k) = [x1(k) · · · xj(k) · · · xJ(k)]
T

, (1)

being k the time index, k = 1, 2, · · · ,K, and j the channel

index, j = 1, 2, · · · , J . In the present paper, x(k) is the out-
put of a Volterra filter, as detailed in Section 3. Gathering all

input samples from 1 to K, the K × J input matrix is defined

asX = [x(1) x(2) · · · x(K)]
T
, i.e., each row corresponds

to the input signal for a given value of k.

The LAR algorithm uses this matrix from another point

of view: taking the jth channel, from now on named as co-

efficient, with all its samples, we may write the input matrix

as:

X = [x1 · · · xj · · · xJ ] , (2)

where

xj = [xj(1) · · · xj(k) · · · xj(K)]T (3)

is the jth coefficient data vector.

All K predictions are also gathered in an output vector, y,

as follows:

y =







y(1)
...

y(K)






= Xw, (4)

where w is the filter coefficient vector.

Being d the reference vector, d = [d(1) · · · d(K)]
T
,

and e the prediction error vector, e = d − y, we define the

J × 1 correlation vector c, between the input matrix and the

prediction error, as follows:

c = XT (d − y) = [x(1) · · ·x(K)]







e(1)
...

e(K)













c1

...

cJ






=







∑K

k=1
e(k)x1(k)
...

∑K

k=1
e(k)xJ (k)






(5)

As can be observed from the previous equation, the jth

element of c, cj , corresponds to an estimate of the correlation

between the error and the jth input signal. The correlation

vector is calculated at every step of the algorithm, identified

by cn, being n = 1, · · · , N the algorithm iteration, which,

for a matter of conciseness, was omitted here.

The set of coefficients inside the model is called the ac-

tive set, A. The LAR prediction vector (y) proceeds, as the

name suggests, in an equiangular direction among the vectors

inside the model. The active set starts empty, meaning that all

coefficients are equal to zero. The LAR algorithm uses N (up

to J) steps to provide a possibly sparse solution with N co-

efficients computed from the estimated output vector y. The

output vector y is updated according to the following equa-

tion (y0 = 0)

yn = yn−1 + γnun, (6)

where n = 1, · · · , N is the algorithm iteration counter, γn is

the step size, and un is the direction vector. γn and un are

properly defined in [1], and more detailed in [11].

It is also important to note that all input variables must be

normalized before initialization: the coefficient data vector

(xj) must be zero-mean and of unitary length, and the refer-

ence vector (d) must be zero-mean.

2.2. The Geometrical Criterion

It is known that at the last possible iteration of the LAR al-

gorithm (when N = J) the Least Squares (LS) solution is

calculated and the correlation vector is zero [1], such that

c = XT e = 0; (7)

therefore,

xj ⊥ e (8)

for any j, which is known as orthogonality principle.

But what if we do not estimate all coefficients? What hap-

pens to the angle between the coefficient data vector and the

error vector before reaching the LS solution? Based on these

questions, we rewrite (5) to

cj = xT
j e = ‖xj‖‖e‖ cos θj (9)

such that

θj = arccos
xT

j e

‖e‖
, (10)

where θj is the angle between the coefficient vector and the

error vector. Note that ‖xj‖ was suppressed since it is equal

to one, as required by data normalization. The correlation

vector is calculated at every step of the algorithm, and so is

the angle θj . Again, the index n was omitted for a matter of

conciseness: a complete formulation of (10) is

θj,n = arccos
xT

j en

‖en‖
, (11)

which is known to be equal to 90o at the last step of the algo-

rithm, i.e., when n = J , or θj,J = 90o, j = 1, · · · , J .

Since the error vector is also known to decrease as more

coefficients are estimated, i.e., included in the active set, it

was expected that the fraction in (11) decreases, getting closer

to zero at every step, resulting in angles closer to 90o. It is in

practice what happens, as it will be verified in Section 3.

Once we identified that the angles decrease monotoni-

cally, a criterion using θn = [θ1,n · · · θj,n · · · θJ,n] was de-
veloped and used to stop the algorithm when

∆θn ≤ σθ1
, (12)
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with ∆θn = max(θn) − min(θn) and σθ1
is the standard

deviation of the angles at the first step. In words, when the

range of the angles is equal to or smaller than their initial

standard deviation, we assume that all necessary coefficients

were estimated and the algorithm is interrupted; each angle

needs to be inside a cone limited by the standard deviation of

the initial angles.

3. SIMULATION RESULTS

In order to evaluate the performance of the criterion based on

the standard deviation of the angles, an experiment with two

nonlinear systems, employing the setup depicted in Fig. 1,

was carried out.
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Fig. 1. Nonlinear system identification with Volterra filter and

the LAR algorithm.

The nonlinear system was represented by an LNL model,

composed by two linear filters with memory (L1 and L2) and

one nonlinearity (N ). Two different scenarios were experi-

mented in order to simulate nonlinear systems of third and

fifth orders. The number of Volterra coefficients were 55 and

791, plus the DC component, for the first and second exper-

iments, respectively. In Fig. 1, n(k) is random observation

noise.

In order to compare the performance of the standard devi-

ation criterion in (12), we have computed three other criteria

[12], [13]: Akaike Information, Schwarz’s Bayesian Informa-

tion, and Mallows Cp (suggested in [1]) criteria, defined as

AIC = K log

(

‖d − y‖2

K

)

+ 2n +
2n(n + 1)

K − n + 1

BIC = K log

(

‖d − y‖2

K

)

+ n log K

Cp =
‖d − y‖2

σ2

d

− K + 2n

being K the amount of samples and n the number of coef-

ficients estimated. The three criteria work in a similar way:

after calculating for all values of n (from 1 to J), the one that

yields the smallest AIC/BIC/Cp result is the best number of

coefficients to be estimated. This is already a possible disad-

vantage of these methods: all possible models shall be con-

structed in order to select one, i.e., the LAR algorithm shall

iterate until n = J .

3.1. 1st Scenario: Third-Order Volterra + LAR

For the first scenario, the LNL model was constructed as

L1 : r(k) = wT
1
s(k)

N : z(k) = ar(k) − br3(k)

L2 : d(k) = wT
2
z(k) + n(k)

where

w1 = [0.5 1 0.5]
T

s(k) = [s(k) s(k − 1) s(k − 2)]
T

w2 = [0.1 − 0.5 0.1]
T

z(k) = [z(k) z(k − 1) z(k − 2)]
T

with w1 and w2 the first and second filter vectors, respec-

tively, and s(k), z(k), and r(k) input signals as depicted in

Fig. 1. Although the optimal coefficient vector of the Volterra

filter has 55 coefficients, 28 result equal to zero.

In addition, two nonlinear systems were simulated in this

scenario, the first, called NL1, had a = 0.1 and b = 0.01;
the second, called NL2, had a = b = 1. Their difference is

only in the coefficient magnitudes, not in their kernel posi-

tions. The main objective here was to evaluate how much the

coefficient magnitude influences the results. Both scenarios

had a hundred runs averaged to calculate the number of coef-

ficients estimated by each criterion for thirty sets of K, from

K = 100 to K = 5, 000.
The histogram of the angles between each coefficient data

vector and the error vector is shown in Fig. 2 at the first step

and at step N , when ∆θn ≤ σθ1
. Each color means a value

of K, from blue to red (there are thirty colors, that is why all

seem so close). The angles varied in a range of 50o for both

experiments, being just dislocated when they are compared:

from 80o to 130o and from 45o to 95o, for NL1 and NL2,

respectively. At the first step, the angles are spread and at step

N they are more concentrated around 90o; at this point, the

prediction error vector is not orthogonal to every coefficient

data vector, but the resulting error is already tolerable. When

n = J , the histogram would be a line at 90o for both cases,

since it corresponds to the LS solution.

In Fig. 3 we can see the number of coefficients that should

be estimated if each of the tested criterion had been chosen to

stop the LAR algorithm. As less samples are available, more

coefficients are expected to be estimated; however, below ap-

proximately K = 500, the number of estimated coefficients

is increasing in several criteria, meaning that below this value

the result is not accurate, the number of samples is not enough

2106



80 90 100 110 120 130
0

10

20

30

80 90 100 110 120 130
0

5

10

15

20

degrees

θj,1

θj,N

∆θ

(a) NL1

50 60 70 80 90
0

10

20

30

50 60 70 80 90
0

5

10

15

20

degrees

θj,1

θj,N

∆θ

(b) NL2

Fig. 2. Histogram at the first step and when ∆θn ≤ σθ1
. For

each value of K, the initial standard deviation is different,

for example, for K = 100 we have σθ1
= 9.7 for NL1 and

σθ1
= 11.2 for NL2; for K = 5, 000 we have σθ1

= 9.3 for

NL1 and σθ1
= 10.5 for NL2.

to converge. For the LNL system simulated, the number of

non-zero coefficients is 27; hence, for both experiments the

∆θ criterion is closer to the correct value.
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Fig. 3. Number of coefficients that should be estimated by

each criterion.

3.2. 2nd Scenario: Fifth-Order Volterra + LAR

For the second scenario, the LNL model was constructed as

L1 : r(k) = wT
1
s(k)

N : z(k) = ar(k) − br3(k) + cr5(k)

L2 : d(k) = wT
2
z(k) + n(k)

where

w1 = [0.5 0.5 1 0.5]
T

s(k) = [s(k) s(k − 1) s(k − 2) s(k − 3)]
T

w2 = [0.1 − 0.5 1 − 0.5]
T

z(k) = [z(k) z(k − 1) z(k − 2) z(k − 3)]
T

with w1 and w2 the first and second filter vectors, respec-

tively, and s(k), z(k), and r(k) input signals as depicted in

Fig. 1. Although the optimal coefficient vector of the Volterra

filter has 791 coefficients, 580 result equal to zero (the correct

number of nonzero coefficients is 211).

Once again, two nonlinear systems were simulated, being

NL1 with a = 0.1, b = 0.01 and c = 0.001 and NL2 with a =
b = c = 1. Both scenarios had fifty runs averaged to calculate
the number of coefficients estimated by each criterion for ten

sets of K, from K = 1, 000 to K = 10, 000.

The histogram of the angles are shown in Fig. 4. A be-

havior similar to the one in the first experiment is seen, angles

spread at the first step in a range close to 50o, whereas at step

N , when ∆θn ≤ σθ1
, angles are more concentrated around

90o.
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Fig. 4. Histogram at the first step and when ∆θn ≤ σθ1
for

each set of K. For K = 1, 000 we have σθ1
= 4.00 for

NL1 and σθ1
= 3.84 for NL2; for K = 10, 000 we have

σθ1
= 3.86 for NL1 and σθ1

= 3.71 for NL2.

Since estimating all coefficients is very time-consuming

and knowing from the LNL model that just 211 coefficients

are non-zero, to evaluate AIC/BIC/Cp criteria the LAR al-

gorithm was run until n = 500. The number of estimated

coefficients by each criteria is shown in Fig. 5. The AIC cri-

terion did not converge for NL2. As in the first experiment,

the criterion we propose herein, based on ∆θ, yields a result

which is very close to the correct number of coefficients that

should be estimated: approximately 230 for NL1 and 250 for

NL2.
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Fig. 5. Number of coefficients that should be estimated by

each criterion.

4. CONCLUSIONS

In this work, a geometrical stopping criterion for the LAR

algorithm based on θj , angles between the coefficient data

vector and the error vector, is proposed to be used in Volterra-

based nonlinear system identification. The criterion proposes

to stop the LAR algorithm when the range of the angles is

equal to or smaller than their initial standard deviation, i.e.,

∆θn ≤ σθ1
. This geometrical criterion was compared to

Akaike, Schwarz’s Bayesian, and Mallows Cp criteria in two

different scenarios: identification of nonlinear systems of

third and fifth orders. Both nonlinear systems were simulated

by LNL models, which were identified using the LAR algo-

rithm in combination with a Volterra filter. In each scenario,

two different coefficient magnitude values were tested. One

advantage of using the ∆θ criterion is that the LAR algorithm

does not need to iterate until n = J to evaluate the best value

N of non-zero coefficients, as it is needed for the other crite-

ria tested. Also, in all experiments, the geometrical stopping

criterion resulted in a number of non-zero coefficients closer

to that of the unknown system. In other words, it was able to

estimate better the correct number of non-zero coefficients.
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