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ABSTRACT

The main aim of this paper is to develop a monitoring sys-
tem for the analysis of Land cover classes (Agriculture, Ur-
ban and water). Hence in this perspective, the use of Moder-
ate Resolution Imaging Spectroradiometer (MODIS) Satel-
lite data is a good choice, as because of its temporal as well
as spectral capability and as well as it is freely available.
The problems with MODIS data are their poor spatial reso-
lution. This problem can be minimized by application of the
fusion techniques where high resolution data will be used to
fuse with low resolution data. Hence in this paper, we have
considered to fuse, high resolution i.e., like 15m resolution
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) data with moderate resolution i.e., like
250m Terra MODIS satellite data. The main aim of this pa-
per is to analyze the effect of classification accuracy on ma-
jor type of land cover types like agriculture, water and urban
bodies with fusion of ASTER data to MODIS data. Curvelet
transformation has been applied for fusion of these two satel-
lite data and Minimum Distance classification technique has
been applied for the resultant fused data. It is quantitatively
observed that the overall classification accuracy of MODIS
data after fusion is quite enhanced. This type of fusion tech-
nique may be quite helpful in near future to maximize the use
of freely available satellite data and consequently to develop
a monitoring system

1. INTRODUCTION

Since, the launch of the first Earth resource satellite, i.e.,
Landsat-1 in 1972, satellite data processing has become an
increasingly important tool for the inventory, monitoring,
management of earth resources and many other applications
[1]. The increasing availability of information products gen-
erated from satellite data has added greatly to our ability to
understand the patterns and dynamics of the earth resource
systems at all scales of inquiry [2, 3]. In which one of the
most important application is the generation of land cover
classification from satellite data for understanding the actual
status of various classes. Compared to more traditional map-
ping approaches such as terrestrial survey and basic aerial
photo interpretation, land-use mapping using satellite data
has the advantages of low cost, large area coverage, repeti-
tively, and computability.

The prospect for the use of satellite data in land cover clas-
sification is an extremely promising one. The availability
of moderate resolution imaging Spectroradiometer (MODIS)
data with greatly improved spectral, spatial, geometric, and
radiometric attributes provides significant new opportunities
and challenges for remote sensing-based land cover classi-
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fication [4]. But, maximum high resolution satellite data is
high priced and it is need of research to explore the maxi-
mum utilization of freely available satellite data. For the full
exploitation of increasingly sophisticated multisource data,
fusion techniques are being developed. It is the aim of image
fusion to integrate different data in order to obtain more in-
formation that can be derived from each of the single sensor
data alone. The fusion of these disparate data contributes to
the increasing classification accuracy as stated by [5].

Many image fusion methods have been proposed, a detailed
review on this issue was given by [5]. Some methods such as
intensity-hue-saturation (IHS)[6, 7], Brovey transform [8, 9]
and principal component analysis [9, 10] provide superior
visual high-resolution multispectral images, but have a limi-
tation of high-quality spectral information, while these meth-
ods are useful for visual interpretation. High-quality spectral
information is very important for most remote sensing ap-
plications based such as land cover classification [11]. The
high-quality synthesis of spectral information is particularly
well suited in the case of land cover classification was im-
plied by [12]. More recently, an underlying multiresolution
analysis employing the discrete wavelet transform has been
used in image fusion. It was found that multisensor image
fusion is a tradeoff between the spectral information from a
low resolution Multispectral Images and the spatial informa-
tion from a high resolution multispectral Images. With the
wavelet transform fusion method, it is easy to control this
tradeoff [13].

The wavelet-transform fusion method provides a high spec-
tral quality in fused satellite data. However, data fused by
wavelets have much less spatial information than those fused
by the intensity-hue-saturation, Brovey transform, principal
component analysis [14, 15]. For Land cover classification,
the spatial information of a fused data is just as important as
the spectral information. Therefore, there is a need to de-
velop an advanced method of image fusion, so that fused
data have the same spectral resolution as MODIS data and
the spatial resolution as ASTER data.

In recent Years [16] has used a new transform, the curvelet
transform. The curvelet transform is obtained by apply-
ing the Ridgelet transform [17] to square blocks of detail
frames of undecimated wavelet decomposition. Since the
Ridgelet transform possesses basis functions matching di-
rectional straight lines, the curvelet transform is capable of
representing piecewise linear contours on multiple scales
through few significant coefficients. This property leads to a
better separation between geometric details and background
noise, which may be easily reduced by thresholding curvelet
coefficients before they are used for fusion [16]. Hence the
curvelet transform, therefore, represents edges better than
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wavelets and is well suited for extracting detailed spatial in-
formation, as well as spectral information from an image, and
hence, can be very useful for clustering the various targets.
The Terra and Aqua Moderate Resolution Imaging Spectro-
radiometer (MODIS) [18] instrument provides high radio-
metric sensitivity (12 bit) in 36 spectral bands ranging in
wavelength from 0.4 um to 14.4 um and also it is freely
available. In this paper, the band 1 of spatial resolution 250
m and bandwidth 620-670 nm, and band 2, of spatial reso-
lution of 250m and bandwidth 842-876 nm is considered as
these bands has special features to identify the agriculture
and other land covers.

The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) [19] is a high spatial resolution multi
-spectral imaging radiometer, and is onboard the NASA’s
Terra spacecraft. In this paper, Band 2 with a resolution of
15m and bandwidth 630 to 690 nm is considered and Band
3 with a resolution of 15m and bandwidth 760 to 860 nm
is considered as these bands bandwidth are quite near to the
MODIS bands which we have selected for analysis.

The MODIS data are freely and easily available whereas
ASTER data has to be purchased. Another important as-
pect of MODIS data is that it is highly temporal (i.e., data
is available in a couple of days). Therefore, the MODIS data
may also be very useful for time series analysis, which is
the one of the requirement for developing a monitoring sys-
tem. The spatial resolution of ASTER data is 15m to 90m
while as the spatial resolution of MODIS data is 250m to
1000m. Hence in this paper, the ASTER data is fused with
the MODIS data. There is a need of research to explore the
possibility of use of MODIS data for land cover enhance-
ment with fusion techniques. Therefore, in this paper, we
have attempted to explore the effect of fusion of MODIS and
ASTER data on land cover enhancement.

2. STUDY AREA

Roorkee Region is selected as the study. The area is rela-
tively flat with a maximum slope of 4° (elevations ranging
from 245.5 m to 289.9 m above the sea level). The region
extends from 29°77° N and 30° N, and its longitude ranges
from 77°83” E and 78°01° E. The study area basically con-
sists of agricultural, water and urban classes. Urban class is
mostly comprised of residential areas.

2.1 Data Used

e ASTER data of Level 1B is used which is taken on 17th
March 2001

o The MODIS image considered is MODIS/Terra Surface
Reflectance 8-Day L3 Global 250m SIN Grid of March
22,2001.

Both satellite data covers approximate the same spectral
range.

3. THEORETICAL BASIS

3.1 Curvelet Transform for Fusion

In this paper curvelet fusion is applied to fuse high resolu-
tion ASTER data on moderate resolution MODIS data. The
main feature of the curvelet transform is that it is sensitive
to directional edges and capable of representing the high-
pass details of object contours at different scales through
few sparse nonzero coefficients. In the subsequent section,

the ATrous wavelet transform, which represents the start-
ing point of the curvelet transform is reviewed, the ridgelet
transform by which the curvelet transform is derived, is in-
troduced, then the curvelet transform is briefly outlined.

3.2 A Trous Wavelet Transform

The ATrous wavelet transform (ATWT) [20] is a nonorthog-
onal multiresolution decomposition defined by a filter bank
{h,} and {g,=6,-h, }, with the Kronecker operator &, denot-
ing an allpass filter. The filter bank does not allow perfect
reconstruction to be achieved if the output is decimated. In
the absence of decimation, the lowpass filter is upsampled by
2/, before processing the j" level. Hence the name ATrous
which means with holes.

For J-level decomposition, the ATWT accommodates a num-
ber of coefficients J + 1 time greater than the number of pix-
els. Due to the absence of decimation, the synthesis is simply
obtained by summing details levels to the approximation:

J
f(m,n):c/(m,n)+2dj(m7n) (1
j=1
Where ¢;(m,n) and d;(m,n), j=1,. . . ,J are obtained through
2-D separable linear convolution with the equivalent lowpass
and highpass filters, respectively.

3.3 Ridgelet Transform

The next step is finding a transformation capable of repre-
senting straight edges with different slopes and orientations.
A possible solution is the ridgelet transform [17], which may
be interpreted as the 1-D wavelet transform of the Radon
transform. The ridgelet basis function is given by [21, 22]:

-1, x1c080 +xp5in0 — b
Vab,o(x1,%2) = a2 y( 1 2

) @

a

for each a>0, each beR and each 6 € [0,2x). This function
is constant along lines x; cos 6 + x> cos @ = const. Thus, the
ridgelet coefficients of an data f(x,x»), are represented by

Rf(a7b76):/_ /_ Vapo(x1,x2)f(x1,x2)dx1dx,  (3)

This transform is invertible and the reconstruction formula is
given by:

2m oo oo da d
f(XhXZ):/O [mfo Rf(aab,Q)Wa.b,e(x1,X2)a7de

“
The Radon transform for an object f is the collection of line
integrals indexed by 6 € [0,27) % R and is given by:

Rf(B,t):/:o/:lf(xl,xz)*ﬁ(xl c0s 0+ x2 5in 6 —1)dx1dx2
)

Thus, the ridgelet transform can be represented in terms
of the Radon transform as follow:

Ri(a.b,0) = [ Rf(6.0aTy(" Dt (©)
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Figure 1: Flowchart indicationg the methodology for the fu-
sion of ASTER and MODIS data

Hence, the ridgelet transform is the application of the 1-D
wavelet transform to the slices of the Radon transform where
the angular variable 0 is constant and t is varying.

3.4 Curvelet Transform

The curvelet transform is given by filtering and applying
multiscale ridgelet transform on each bandpass filters which
is described as following in different steps

3.4.1 Subband Decomposition
The data is filtered into subbands

f%(POfaAlf,Ava“") @)

where a filter P, deals with frequencies £ <1 and the band-
pass filter A is concentrated near the frequencies [2¢, 2%5+2],
e.g., A = Yo x [, yn5(8) = V’(272s‘5)

3.4.2 Smooth Partitioning

93

Each subband is smoothly windowed into squares of an ap-
propriate scale.

Asf — (WQAsf)a 0 € Qs (8)

3.4.3 Renormalization

Each resulting square is renormalized to unit scale.

8o =(Tp)"
3.4.4 Ridgelet Analysis

Each square is analyzed via the discrete ridgelet transform.

Y(woAsf),Q € Oy ©

4. IMPLEMENTATION OF DEVELOPED
APPROACH

Figure 1 shows the flowchart of the proposed methodology
for the curvelet fusion of ASTER data and MODIS data for
analyzing the classification of the MODIS data before and
after the fusion. MODIS and ASTER data are subsetted to
Roorkee region for this study. After subsetting MODIS has
87*#87 pixels and ASTER has 1186*1186 number of pixels,
by which both are acquiring approximately the same area.
The flowchart fig. 1 is deciphered in the following steps

Figure 4: MODIS Band 1

Figure 5: MODIS Band 2

e MODIS Band 1| and Band 2 are considered initially. The
Band 1 is fused with the Band 2, through the curvelet
transform. (For ATWT transform, equation 1 is com-
puted for Band 2, thereby Band 2 is decomposed into
J + 1 subbands, which includes C; & d;, where C; is a
coarse or smooth version of Band 2, and d; is the de-
tails of Band 2 at scale 27/, here j=2. C; is replaced
by Band 1 and then the Ridgelets transform (equation
2- 6) is applied to all the decomposed subbands i.e. d;
bands, thereby obtained ridgelet coefficients are hard-
thresholded in order to enhance edges in the fused data
and Inverse Ridgelet transforms (IRT) is carried out to
obtain a new data which reflect the fused data of Band
1 and Band 2) Consequently the resultant fused data is
MODI12.

e Simultaneously subsetted ASTER data of Band 2 and
Band 3 are considered. The Band 2 is fused with the
Band 3, through the curvelet transform. Similar fusion
process has been applied for fusion of ASTER band 2
and band 3. ATWT transformation is applied for band 3
and C;j is replaced by band 2. Here j is 2. Then ASTER
fused data is obtained as AST23.

e The AST23 and MODI12 is the interpolated fused data
of MODIS bands are considered for the fusion through
curvelet transform. Similar fusion process has been ap-
plied for fusion of AST23 and MOD12. ATWT trans-
formation is applied for AST23 and C; (j=2 for present
case) is replaced by MOD12 which gives the resultant
fused data AS_MO.

5. ANALYSIS OF EXPERIMENTAL RESULTS

The ASTER band 2 and ASTER band 3 which is georefer-
enced and subset to the Roorkee region is shown in the fig. 2
and 3. MODIS band 1 and MODIS band 2 are shown in
fig. 4 and 5 respectively which is georeferenced and sub-
set to the Roorkee region. The Minimum Distance classi-
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Figure 6: Spectral Response of ASTER Band 2
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Figure 7: Spectral Response of ASTER Band 3

fication technique has been applied for obtaining the major
type of land cover classification i.e. urban, agriculture and
water. ENVI 4.3 and MATLAB 7.0 are used for whole pro-
cessing and algorithm implementation. We have identified
235 Ground Control points (GCP) for agriculture, 216 GCP
for urban and 255 GCP for water bodies from Toposheet of
Roorkee region, Google earth, and ground survey points. On
the basis of these GCPs, we have computed the classification
accuracy. The Spectral response for this GCP for ASTER
band 2, band 3 and MODIS band 1 and 2 are shown in the
fig. 6, 7, 8, 9 respectively (x-axis represents the GCPs con-
sidered and y-axis represents the surface reflectance values
of corresponding bands).

MODIS band 1 and band 2, ASTER Band 2 and Band 3 are
classified by minimum distance classification technique, and
thereby the overall classification accuracy is computed and
has been tabulated in Table 1. The overall classification ac-
curacy for MODIS band 1, MODIS band 2 is 34.06% and
52.17% respectively. In other hand ASTER band 2, ASTER
band 3 has overall accuracy of 72.02% and 98.73% respec-
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Figure 9: Spectral Response of MODIS Band 2

tively. It is clear from fig. 7 that GCPs have a distinct spectral
response for agriculture, urban and water bodies. Hence the
classification accuracy is good for ASTER band 3, whereas
the same GCPs in ASTER Band 2 (fig. 6) have some overlap
spectral response, and hence there is a reduction in the accu-
racy. In another hand, the spectral response of MODIS Band
1 and MODIS Band 2 (Fig. 8, 9), represents no clear dis-
tinction of different land cover. This may be one of the main
reasons for having poor classification accuracy for MODIS
band 1 and band 2.

Minimum distance classification technique is applied on
the resultant fused image of MODIS bands i.e., MOD12,
ASTER bands i.e., AST23 and AS_MO (fused image of
AST23 and MOD12), and corresponding classification ac-
curacy is computed and tabulated in table 1. It is observed
that the resultant fused data i.e., AS_MO has better accuracy
than the MODIS data of band 1 and 2. It is also observed
that the fused data has enhanced the classification accuracy
in comparison to MODIS band 1 data where as with MODIS
band 2 it is moderately enhanced the classification accuracy.
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Table 1: Classification Accuracy

Data Producer’s Accuracy Classification
Agriculture | Urban | Water | Accuracy (%)
ASTER 27.23 68.06 | 80.94 72.02
Band 2
ASTER 99.67 95.83 | 98.98 98.73
Band 3
MODIS 9.29 56.13 | 51.18 34.06
Band 1
MODIS 73.89 23.87 | 48.03 52.17
Band 2
MODI12 54.42 6.45 | 59.84 41.14
AST23 99.74 95.37 | 98.82 98.17
AS_MO 82.13 29.17 | 54.12 54.81

Overall as well as individual classification of each considered
land cover has enhanced in the fused data.

6. CONCLUSIONS

A methodology for the enhancement of overall classification
accuracy for the MODIS data is presented. The high resolu-
tion data (i.e., ASTER) is fused with low or moderate reso-
lution data (i.e., MODIS) and the resultant fused data is ana-
lyzed in the viewpoint of land cover classification through the
curvelet based fusion. The overall classification accuracy for
the fused data is better than the MODIS band 1 and MODIS
band 2. This type of fusion may be helpful in near future
to maximize the use of MODIS data, and thereby paving
the way for developing a land cover monitoring system with
MODIS satellite data.
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