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ABSTRACT

We consider the problem of source enumeration in array pro-
cessing when only few samples are available. In this case,
the noise eigenvalues' spread, so that most existing meth-
ods, which assume equality of the noise eigenvalues implic-
itly, suffer large performance loss or even break down. We
present a method based on hypothesis testing with the boot-
strap. The test statistic is derived by using the exponen-
tial profile property of the noise eigenvalues. Simulations
show the significant performance gain offered by the pro-
posed method in terms of correctly detecting the number of
sources for a very small sample size.

1. INTRODUCTION

Inferring the number of sources impinging on an array of
sensors is the critical first step in a subsequent signal pa-
rameter estimation in array processing. Because of com-
putational and modeling simplicity, most classical methods
are derived based on the sample eigenvalues of the sam-
ple covariance matrix. One category of classical methods
is based on information theoretic criteria (ITC), including
Akaike’s information criterion (AIC) and Rissanen’s mini-
mum description length criterion (MDL), proposed by Wax
and Kailath [1]. The other category is based on sequential
hypothesis testing procedures, including the sphericity test
[2] and the bootstrap-based test [3]. Addressing the problem
of source enumeration based on the asymptotic distributions
of the sample eigenvalues provided by random matrix theory
has emerged recently [5]-[7].

Of interest is to detect the number of sources using a
number of samples comparable to or even smaller than the
system size, i.e., the number of sensors, which has become
increasingly important in many state-of-the-art radar and
sonar systems. When the sample size is extremely small,
the spread of the noise eigenvalues is quite significant [5].
Thus, the noise eigenvalues are not sufficiently close to each
other. A systematic description of the spreading phenomenon
is given in [8], which is known as the Marc¢enko-Pastur den-
sity. Unfortunately, most existing methods either use some
asymptotic distributions of the sample eigenvalues, which are
inaccurate for relatively few samples, or ignore the spread-
ing phenomenon of the noise eigenvalues, so that they do not
yield satisfactory performance in such severe practical situ-
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ation. New methods which take into account the blurring of
the noise eigenvalues are expected to emerge.

More recently, the authors in [5] developed a new method
for relatively few samples, by using the Marcenko-Pastur
density. This method shows the superiority with respect to
the Wax-Kailath MDL-based method [1]. The assumptions,
such as high-dimensional spiked signal, asymptotic regime
for the system size and the sample size, render the method
inappropriate for all cases of small sample size.

In [3], bootstrap techniques are adopted to construct a se-
quential hypothesis testing procedure, for testing the equality
of the sample eigenvalues. It performs well when the sample
size is not extremely small, but its computational complexity
is exponentially proportional to the system size. It is inappli-
cable for the high-dimensional array system. Besides, the test
statistic is inappropriate, since equality of the noise eigenval-
ues does not hold for very few samples due to the spreading
of the noise eigenvalues. To address these two issues, we
use a more accurate test statistic which reflects fluctuations
of the noise eigenvalues, following the heuristic result in [4],
that is, the profile of the ordered noise eigenvalues is seen
to approximately fit an exponential law for white Gaussian
noise and short data. Then, a relatively computationally sim-
ple bootstrap-based test procedure is constructed in order to
infer the number of sources.

The remainder of the paper is organized as follows. The
array signal model is introduced briefly in Section 2, fol-
lowed by a description of the bootstrap-based method in [3]
in Section 3. The main idea of the proposed method is given
in Section 4. Simulation results and short discussions are
given in Section 5, before conclusions are drawn in Section 6.

2. ARRAY SIGNAL MODEL

Consider g narrow-band far-field sources impinging on an
array with p sensors (p > ¢g). The received n snapshots of in-
dependent and identically distributed (i.i.d) circular complex
data can be written as

Xi=Asi+v,i=1,...,n @))

where A is the p x g array steering matrix, s; is the g-
dimensional source signal with zero mean, and v; is the
source-independent i.i.d. noise with zero mean and covari-
ance 62I. The population covariance matrix of the received
data is given by

R, =E[xx] = AR,A" + 621 2)

where R, = E[s;s!] is the source covariance. (-)" and I
denote the Hermitian transpose and the identity matrix, re-



spectively. The population eigenvalues of R, are given by
M> > A > g1 = =Ap =02 (3)

where the first g eigenvalues belong to the source signal, and
the last p — g to the noise. In general, the problem of source
enumeration is addressed based on counting the multiplicity
of the smallest eigenvalues. However, only a finite number
of snapshots is available in reality, so that we do not have
access to the population covariance matrix but to its finite
sample estimate

A

R.=-Y xx[' 4)

-

S| =

i=1

with corresponding sample eigenvalues:
h>>h>l>->1 (5)

Which are all distinct with probability one. Although the
joint distributions of the sample eigenvalues are given in
some different forms in the case of Gaussian data, they are
mathematically intractable or unreliable for the small sample
size case. In order to avoid using these cumbersome distri-
butions for the problem of source enumeration, the bootstrap
is proposed to simulate the distribution of the sample eigen-
values, more precisely, the distribution of the sufficient test
statistic constructed based on the sample eigenvalues. In the
next section, we focus on the bootstrap-based method pro-
posed in [3] due to its superiority over ITC-based methods
for the small sample size case.

3. THE BOOTSTRAP-BASED TEST

Assuming that the differences between the noise sample
eigenvalues are relatively smaller than those between the
source sample eigenvalues, in order to detect statistically sig-
nificant difference of the eigenvalues, the following set of
hypotheses is constructed:

Hy : lk+1 = = An (6)
Hp*2 lp*l = ln

with corresponding alternatives Ko, Kg,...,K,_5. Each hy-
pothesis is obtained by

Hi=(Hij, i=k+1,...p—1,j=i+1,....p (7
i

where H;; : A=A j tests the difference of two eigenvalues.
These hypotheses are tested sequentially, starting from Hg
until finding a true hypothesis. If the hypothesis Hy is re-
jected, move the test forward to the next hypothesis Hy. .
Otherwise, accept the hypothesis H; and stop the total test
procedure. As the test result, acceptance of Hy indicates the
estimate § = k.

The hypotheses in Eq. (6), which are constructed by in-
tersections between sub-hypotheses in Eq. (7), are tested
with a multiple hypotheses test (MHT) [11]. It means that
2?7 hypotheses are tested simultaneously no matter how many
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sources are present. The computational cost increases expo-
nentially with the array size p. Also, the bootstrap resam-
pling algorithm [10] which is a computer-intensive method
is employed to simulate the null distribution of the test statis-
tic for each hypothesis. Bootstrap-based MHT formulations
can be computationally expensive, especially for the high-
dimensional array system. Therefore, a computationally sim-
ple test procedure is to be sought for.

This method which tests the equality of the sample eigen-
values, performs efficiently when the number of samples n
is relatively large, e.g., n = 100. When n is comparable
to p, e.g., n = p = 10, the method breaks down due to the
noise eigenvalues spread. To remedy this problem, [3] in-
troduced the concept of bias of the sample eigenvalues, fol-
lowing the result of [12]. It is necessary to reduce the bias
which becomes quite significant in the very small sample size
case. Through bias correction for the sample eigenvalues,
the assumption that the noise-only sample eigenvalues have
equal means, to some extent, is recalled. The bias-corrected
bootstrap-based test continued to work for very few samples.

4. THE MODIFIED BOOTSTRAP-BASED TEST

In this section, instead of using bias correction before the
tests, we use a more appropriate test statistic which considers
the fluctuations of the noise eigenvalues due to the very small
sample size. The authors in [4] show the approximate expo-
nential profile of the ordered noise eigenvalues (see Eq. (5))

lo=1lgr3,P, ap=q+1,...p ()
where 1, = e~2(a > 0) denotes the exponential function
of the number of the noise eigenvalues m = p — ¢ and the
number of samples n. Thus the sequence of the ordered noise
eigenvalues seems to be a geometric series. a can be derived
based on the assumption,

f: l; = mo} )

where sz denotes the noise variance, and an order-4 Taylor
expansion of the hyperbolic tangent function. A corrected
version [9] which removes the assumption m < n is given as

a=

1( 15 225 180u (10)
2\p2+2 | (u2+2)? v(pr-1)(p?+2)

where 1 = min{m,n} and v = max{m,n}. It can be seen
from the computation of 7, , that the relationship in Eq. (8) is
valid for all sample sizes, with the extreme case of the noise
eigenvalues becoming equal as n tends to infinity. Due to
the relationships in Egs. (8) and (9), from preceding smaller
observed noise eigenvalues, we can predict the next noise
eigenvalue:

- ) L—rigin .0 .
ly—i= 1) ————6 =1,...,p—1 11
p—i (l+ )]_(rH»l,n)lJrl Vo l ) P ( )
with

]i*l

& =< Ll (12)
j=0



where &2 is an estimator of the noise variance, according to

Eq. (9). Then, we test the hypothesis
Hi:Ap_i= l},,i against
K,' . lp,i 75 ip,i

where A,,_; is the population eigenvalue with its estimate /,,_;
which is obtained from the sample covariance matrix. The
test is conducted by the bootstrap, see Table 1 [10], where
0=2Ap—i, 6= I,—iand 6y = fp,i. If H; is accepted, the ob-
served noise eigenvalue still follows the theoretical exponen-
tial profile, that is, lp,i belongs to one of the noise eigen-
values. Otherwise, l,,,,- is one of the source eigenvalues.
Following this statement, we construct a sequential test pro-
cedure in Table 2, in order to detect the number of the noise
or source eigenvalues.

(13)

Table 1. The bootstrap-based test for the hypothesis H: 8 =
6y against K : 6 £ 6.

Step 0. Experiment. Conduct the experiment and col-
lect the data into the sample 2 = {x1,X2,...,X,}-
Calculate the test statistic

T, =6 6]/5,

where 0 is an estimator of 6 and 62 is an estimator of
the variance 62 of 6.

Step 1. Resampling. Draw a random sample of size n,
with replacement from 2~

2 = (X1, %5, %)

Step 2. Calculation of the bootstrap statistic. From
2, calculate

TF=16"—6|/6%,

where 6* and 6* are computed in the same manner as

6 and &, but with the bootstrap sample .2"* replacing
Z .

Step 3. Repetition. Repeat Steps 1 and 2 many
times to obtain a total of B bootstrap estimates
T, T" Tr

n1o4n2r 5 Ly e

Step 4. Ranking. Rank the collection
T, T ,,..., T, into increasing order to obtain

Ly =T = =T
Step 5. Test. A bootstrap test has then the following
form: reject Hif 7;, > T(*q), where the choice of g deter-
mines the level of significance of the test and is given
by o = (B+1—¢q)(B+1)"!, where « is the nominal
level of significance.

It is worth mentioning that the exponential fitting test
(EFT) proposed in [4] used a more complicated test statistic,
whose distribution is unknown. For this reason, the threshold
for the hypothesis test was calculated by Monte Carlo simu-
lations with a prior knowledge of the exact noise distribution.
Itis unrealistic in practice since it is not always possible to re-
peat the experiment for data collection or there is not enough

Table 2. The sequential test procedure.

Step 1. Seti= 1.

Step 2. Test the hypothesis in Eq. (13).

Step 3. If K; is accepted then set § = p — i and stop.
Step 4. If H; is accepted and i < p— 1 thenseti =i+ 1
and return to Step 2. Otherwise set § = 0 and stop.

a prior knowledge to run Monte Carlo simulations. In this
case, the bootstrap is a proper alternative, due to its simple
and attractive properties. This is validated by the simulations
in Section 5.

5. SIMULATIONS AND DISCUSSIONS

A uniform linear array with inter-sensors spacing of half the
wavelength was employed. For simplicity, the case of un-
correlated Gaussian source signals contaminated by Gaus-
sian noise was considered. Simulation results were obtained
based on 500 Monte Carlo runs. The number of bootstrap
samples was chosen as B = 200, and a level of significance
o = 2% was set for all involved hypothesis tests. The tra-
ditional bootstrap-based methods [3] without and with bias
correction are denoted by “BTSeqn” and “BTSbas”?, respec-
tively. Denote the methods proposed in [4] and [5] by “EFT”
and “NAD?”, respectively. The method proposed in this paper
is denoted by “BTSexp”.

Suppose that we have an array with 8 sensors and 3
sources, which are located at —10°,5°,15° with respect to
broadside. The signal-to-noise ratio (SNR) range in this sim-
ulation was focused on [0, 16] dB. Only 10 snapshots were
used. The results are quantified by the empirical probability
of correctly detecting the source number (i.e., Detection rate)
vs. SNR, see Fig. 1. For very few samples, the method BT-
Seqn breaks down completely. With bias correction of the
eigenvalues, the method BTSbas starts to work, although it
performs unsatisfactorily. The method EFT, with knowing
the exact noise distribution a priori, has slightly lower detec-
tion rate than the well known method NAD. The proposed
method BTSexp performs better than the other methods. It
has highest convergence rate with respect to SNR. It is worth
noting that the method BTSexp suffers a large performance
degradation at low SNRs (e.g., SNR < 0 dB).

Suppose that we have an array with 15 sensors and 3
sources, which are located as in the preceding simulation.
The SNR was set as 6 dB for all sources. The number of
snapshots n varied in [10, 18]. The detection rate is given with
respect to the number of snapshots » in Fig. 2. In this set-
ting, the method BTSexp outperforms significantly the other
two methods. Its performance is quite stable as the number
of samples n increases. Unlike the method NAD, the method
EFT decreases its performance as n increases. It seems that
Monte Carlo simulations fail to provide accurate knowledge
of the distribution of the test statistic, especially when n is
relatively large.

Based on the above simulations for the very few sam-
ple case, we can see that the proposed method BTSexp pro-
vides the best results in terms of source enumeration at a
relatively high SNR when the number of samples are close

2Herein, the jackknife is used for bias correction. More details about the
jackknife are introduced in [14].
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to the number of sensors. It increases the performance gain
substantially compared to the method BTSbas or BTSeqn,
while reducing the computational cost. The involved new
test statistic is more efficient in dealing with the spreading
phenomenon of the noise eigenvalues than bias correction
for the sample eigenvalues. It is also apparent that the boot-
strap is a much better choice than Monte Carlo simulations
for inferring the statistics numerically in our case, since the
method BTSexp is superior to the method EFT. In addition,
compared to the method NAD which has the lowest compu-
tational complexity, the minimal distributional assumptions
are made for the method BTSexp.
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Fig. 1. Detection rate vs. SNR.
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Fig. 2. Detection rate vs. number of samples.

6. CONCLUSIONS

The problem of source enumeration was investigated from a
hypothesis testing viewpoint for the case of very few sam-
ples, i.e., the sample size is nearly equal to the array size. In
light of the spreading phenomenon of the noise eigenvalues
for very few samples, the property of the noise eigenvalues’
exponential profile was used to construct the test statistic.
Then, the null distribution of the test statistic was provided
via bootstrap techniques, avoiding the use of cumbersome
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distributions of the sample eigenvalues. Finally, the num-
ber of sources was detected through a sequence of hypoth-
esis tests. Simulations show that the proposed method out-
performs the original bootstrap-based method and the well
known method proposed in [5]. For future work, a more ef-
ficient estimator of noise variance 63 (e.g., [6]) is expected
to replace the one in Eq. (12), which is originally designed
for the infinite sample size [13]. More importantly, a more
accurate test statistic is to be found, with the help of random
matrix theory.
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