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ABSTRACT
The clipped input LMS (known as CLMS) is a common
adaptive algorithm that has a lower complexity than the con-
ventional LMS. Furthermore, the CLMS is appreciated in
real-time audio embedded systems as it uses an implicit in-
put normalization, which is necessary for non stationary au-
dio/speech inputs. In this paper -through an exact conver-
gence analysis- done without the common classical assump-
tion, we show that, the CLMS algorithm can outperform the
LMS in some situations at the optimal conditions. We stress
the invalid common result that LMS is faster than CLMS.
This is done for finite alphabet inputs where the lower the
input cardinality is, the lower is CLMS/LMS complexity.

1. INTRODUCTION

Adaptive filters are useful in a wide variety of areas such
as digital communications, real-time audio embedded
systems and biomedical electronics. . . [1]-[9]. The adaptive
procedure allows real-time optimization, without a human
operator and everlasting in case of variations [1].
Although the LMS is known for its simplicity and robust-
ness, its computational cost in terms of the processor’s speed
is problematic when the signals have large bandwidths [7].
Therefore, past and recent works are interested in the sign
adaptive filters, which allow to reduce complexity by clip-
ping the estimation error (Sign Algorithm (SA)), the input
data (Clipped Algorithm (CLMS) or Signed Regressor Algo-
rithm (SRA) or both (Sign Sign Algorithm (SSA))[2, 3, 6, 8].

The CLMS is based on input’s normalization, and is
known to be less complex than the LMS. It is essentially used
to reduce the computational time of certain applications [8].
The performances, particulary the convergence speed of the
CLMS, were believed to be slower than those of the LMS.
For the transient behavior, Bershad [10] states that the CLMS
has a convergence rate that is slightly lower than the LMS’s
rate. It was shown to be slower only by a factor of 2

π for the
same steady-state mean square error.
We must note that performances of the CLMS were stud-
ied under some restrictive hypotheses. In fact, Eweda [4]
has only proposed conditions of stability and convergence
rates of the CLMS for correlated Gaussian input and small
step size. Koike [8], however, gave a theoretical formula-
tion for describing the convergence process of the adaptive
filter using the CLMS. Results were derived for near realistic
assumptions, mainly the independence one. These classical
approaches do not account for finite alphabet input signals,
which is unrealistic in the digital transmission context, where
transmitted signals belong to a finite alphabet set.
The present work addresses an exact performance study of
the CLMS algorithm. As proposed in [9], the finite alpha-

bet approach leads to exact analysis results for various struc-
tures, algorithms and context (Identification, Equalization,
Synchronization [9, 11, 12]), and was applied to deduce qual-
itative and quantitative performances results of adaptive al-
gorithms.
Our aim is to claim the common idea that the CLMS is slower
than the LMS, and to emphasize the existence of situations
where CLMS outperforms LMS. Because the behavior of
the CLMS as well as the LMS is highly dependent on the
input[4], we focus on the determination of proper situations
related to the choice of the input data, leading to better con-
vergence speeds.
The main idea of this paper is first to show that the small
step size hypothesis is invalid using on a theoretical analysis
based on finite alphabet approach, and to demonstrate that at
the optimum, the CLMS outperforms the LMS.
In section 2, we review the classical approaches used to an-
alyze LMS and CLMS. In section 3, we present the finite
alphabet approach and its power in determining performance
results for both adaptive algorithms. In the last section, we
focus on the evaluation and the determination of some situ-
ations where the CLMS has a better convergence speed than
the LMS, by varying the parameters that impact the conver-
gence speed.

2. CONVERGENCE ANALYSIS FOR SMALL STEP
SIZE: LMS ALWAYS FASTER THAN CLMS

The considered structure is adaptive identification:
{

ek = yk −HT
k Xk

Hk+1 = Hk + µ f (Xk)ek
(1)

where Xk = [xk, . . . ,xk−L+1]
T is the stationary input observa-

tion vector, L is the dimension of the adaptive filter Hk, µ is
a positive step size and yk is the output signal.
If f is equal to the identity, the considered algorithm is the
LMS. When f = sign{.}, we treat the case of the CLMS,
where sign{.} is the sign function.
The transient behavior of the algorithm can be described by
the evolution of the deviation vector Vk+1 = Hk+1 − Hopt ,
where Hopt is the optimal solution of the system.
Referring to equation (1), we have:

Vk+1 = (I −µ f (Xk)XT
k )Vk + µ f (Xk)bk (2)

Note that bk = yk − (Hopt)T Xk, which is considered to be in-
dependent of Xk.
The performances of adaptive filters were studied under re-
strictive hypothesis due to the dependence of Xk and Vk. In
fact, it is not easy to find an explicit relationship between
E(Vk+1V T

k+1) and E(VkV T
k ), in order to describe the transient
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mean square behavior of the LMS.
This is even more difficult with the CLMS since it uses
the non-linear function sign. Therefore, the CLMS perfor-
mances are usually studied and compared to the LMS, con-
sidering the following assumptions:
• continuous excitation of the algorithm,
• the input or its statistical moments are measurable,
• Xk and Vk are independent, which is only valid when

adaptation is done with small values of step size µ . Gen-
erally towards zero.

The last hypothesis is very restrictive, and unrealistic, so the
comparison result of LMS and CLMS determined in [1] may
not be usually correct.
Under these assumptions, the mean square behavior is de-
rived as:

E(Vk+1V T
k+1) = ∆E(VkV T

k )+ µ2E( f (Xk) f (Xk)
T (bk)

2) (3)

• ∆ = (I −µ(R f +RT
f )+ µ2S f )

• S f = E( f (Xk)XT
k Xk f (Xk)

T ) and R f = E( f (Xk)XT
k )

According to Equation (3), the performances results,
particularly the convergence speed, depend on the quantity
minµ(δmax(µ)), where δmax is the largest eigenvalue of ∆
[11].
Hence, the comparison between LMS and CLMS, will be de-
termined, respectively, from min(δmax(µ)), which depends
on both matrices R f and S f .
Therefore, to compare the convergence behavior of both
LMS and CLMS, it was shown in [1, 3], that the CLMS
pseudo-covariance matrix Rsign = E(sign(Xk)XT

k ) is related
to the covariance matrix R = E(XkXT

k ) as:

Rsign = β
R√
Px

(4)

where Px is the signal’s power.
For an iid and zero-mean sequence β =

E(x̄∗k xk)

[E(|x2
k |)]1/2 .

It is proved in [1] that 0 < β < 1.
The relation (4) is evaluated for small values of step size, and
holds where the input signal is assumed to be zero-mean and
satisfying some conditions such as iid when it is complex
valued.
Based on the result (4), and noting η(n) = E(|V (n)|2) , it
was established that:
• The optimized CLMS algorithm:

η(n+1) = η(n)−β 2µLMS
opt ε(n) (5)

• The optimized LMS algorithm:

η(n+1) = η(n)−µLMS
opt ε(n) (6)

where ε is the Mean Square Error.
Since β < 1, comparing the convergence speed of the mean
square deviation of both algorithms (equations (5) and (6)),
reveals that CLMS is slower than LMS when both of them
are working at their best with step size µopt .
The value of the optimal step size is related to the critical step
size µc defined as:

µc =
2β

L
√

Px
(7)

A suitable choice of the optimal situation is considered
where:

µopt =
µc

2
(8)

Hence, we can conclude that even working at their best, using
the classical approach, the comparison of the convergence
speed shows that LMS is faster than CLMS.
In the next section, we present the finite alphabet approach
which considers the characteristics of the input, and does not
use the independence hypothesis. Thus, it allows us to deter-
mine exactly the eigenvalues of matrices that lead the system
behavior. We also demonstrate, that the optimal step size
µopt is larger than small step size interval, and the CLMS, at
the optimum can be faster than the LMS.

3. CONVERGENCE ANALYSIS WITH QUANTIZED
DATA:

CLMS CAN OUTPERFORM LMS

In the context of digital transmission, the quantized input Xk
belongs to a finite alphabet set A = {M1,M2, . . . ,MN}, where
N is the cardinality.
Since Xk is stationary, it can be modeled by a discrete-time
Markov chain {ψ(n)} with finite state space {1,2, . . . ,N}
characterized by its probability transition matrix P = [pi j]
such as:

Xk = Mψ(k)

The finite alphabet approach consists in splitting the quantity
E(VkV T

k ) into N components as follows [9]:

E(VkV T
k ) =

N

∑
i=1

Qi(k)

Q j(k) = E(VkV T
k 1ψ(k)= j) (9)

where 1ψ(n)= j is the indicator function.
Consequently, to establish the relationship between E(VkV T

k )

and E(Vk+1V T
k+1), we set the following recursion [9]:

Q j(k +1) =
N

∑
i=1

E(Vk+1V T
k+11ψ(k+1)= j1ψ(k)=i)

=
N

∑
i=1

E((I−µ f (Xk)XT
k )VkVT

k (I −µ f (Xk)XT
k )T 1ψ(k+1)= j1ψ(k)=i)

+
N

∑
i=1

µ2E( f (Xk)(bk)
2 f (Xk)

T 1ψ(k+1)= j1ψ(k)=i) (10)

Since Xk belongs to a finite alphabet set A =
{M1,M2, . . . ,MN}, we can derive:

Q j(k +1) =
N

∑
i=1

(I−µ f (Mi)MT
i )Q j(k)(I−µ f (Mi)MT

i )T pi j

+
N

∑
i=1

µ2E((bk)
2)pi j f (Mi) f (Mi)

T (11)

If we denote Q̃(k) =
[vec(Q1(k))T vec(Q2(k))T . . .vec(QN(k))T ]T , where vec
is the operator that transforms a matrix (n×m) to a vector
(n.m). The linear and compact relation that governs the
system (1) is:

Q̃(k +1) = ΓQ̃(k)+ Z̃ (12)
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Where:

Γ = (PT ⊗ IL2)diag((IL−µ f (Mi)MT
i )T ⊗ (IL−µ f (Mi)MT

i ))
(13)

Z̃ =
N

∑
i=1

µ2E((bk)
2)pi j f (Mi) f (Mi)

T

diag(.) is the operator allowing to construct diagonal matrix,
and ⊗ is the Kronecker product.
The performances can be exactly determined from equation
(12), more precisely from the eigenvalues of the matrix Γ as
defined in (13), which depends on:
• the signal statistics: defined from the transition matrix P,
• the finite alphabet related to the different states Mi,
• the step size µ .

In fact, from matrix Γ, we can exactly determine the con-
vergence speed of the algorithm, when working at its best
conditions. Besides, according to finite alphabet approche
the optimal step size µopt , allowing a faster convergence of
the algorithm, is deduced from the the largest eigenvalue
λmax of Γ as:

µopt = arg(min(λmax(µ))) (14)

For the LMS algorithm, referring to equation (13), the
behavior of the system (1), depends on :

ΓLMS = (PT ⊗ IL2)diag((IL −µMiMT
i )T ⊗ (IL −µMiMT

i ))
(15)

The corresponding behavior matrix of the CLMS algorithm
is:

ΓCLMS = (PT ⊗ IL2) (16)

diag((IL −µsign(Mi)MT
i )T ⊗ (IL −µsign(Mi)MT

i ))

Under the small step size assumption, the conventional LMS
and the CLMS comparison is based, referring to (eq(3)), on
the evaluation of the eigenvalue (min(δmax(µ))) depending
on the matrices Rsign and R as detailed in the previous sec-
tion 2.
In case of quantized input data, the comparison of the two
algorithms LMS and CLMS still based on the study of the
largest eigenvalues, nevertheless we are interested on the pa-
rameters (λ LMS

max and λCLMS
max ) of the corresponding matrices

(16) and (15).
This study will allow us to determine the corresponding op-
timal step size in order to evaluate the performances of both
algorithms when working at their best, for the same condi-
tions (alphabet, transition matrix).

4. CLIPPED LMS FASTER THAN LMS :
ILLUSTRATIVE EXAMPLES

In this section, we concentrate on the determination of pos-
sibilities where CLMS is faster than LMS.
Therefore we are looking for situations satisfying the follow-
ing inequality (17):

min(λ LMS
max )

min(λCLMS
max )

> 1 (17)

We begin our study by a simple analytical example to math-
ematically prove the existence of step size range where LMS

is slower than CLMS.
This is illustrated by a simulation of an adaptive identifica-
tion scheme using LMS and CLMS as adaptive algorithms,
and considering the matrix Γ (eq.13), relative to an appropri-
ate alphabet set.

4.1 Analytical example
We consider a simple identification scheme with L = 1, an iid
symmetric alphabet set {±1,±3}. The appropriate Markov
chain will be characterized by the (4×4) transition matrix P
with pi j = 1

4 .
According to (15) and (16), the corresponding matrices ΓLMS
and ΓCLMS that govern the system (1), for LMS and CLMS
algorithms are respectively:

ΓLMS =
1
4









(1−µ)2 (1−µ)2 (1−9µ)2 (1−9µ)2

(1−µ)2 (1−µ)2 (1−9µ)2 (1−9µ)2

(1−µ)2 (1−µ)2 (1−9µ)2 (1−9µ)2

(1−µ)2 (1−µ)2 (1−9µ)2 (1−9µ)2









ΓCLMS =
1
4









(1−µ)2 (1−µ)2 (1−3µ)2 (1−3µ)2

(1−µ)2 (1−µ)2 (1−3µ)2 (1−3µ)2

(1−µ)2 (1−µ)2 (1−3µ)2 (1−3µ)2

(1−µ)2 (1−µ)2 (1−3µ)2 (1−3µ)2









We note that the above matrices have three null eigenvalues.
Consequently, the largest eigenvalues of the two matrices are:

λ LMS(µ) = 1−10µ +41µ2

λCLMS(µ) = 1−4µ +5µ2 (18)

It is easy to verify that λCLMS < λ LMS for µ > 1
6 .
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Figure 1: Largest eigenvalues versus step size for a {±1,±3}
alphabet set

Furthermore, working at optimum we have min(λ LMS
max ) >

min(λCLMS
max ) (figure(1)), and CLMS is faster than LMS for

this range of step size.
Through this simple example, it is easy to see that the

common belief that LMS is faster than CLMS is only true
for small step size.
We have chosen a small alphabet set, because when increas-
ing the alphabet cardinality N and the dimension of the filter
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L, we deal with matrices Γ of dimension (NL2,NL2), and the
analytical results become difficult to set. However, we can
determine exactly qualitative results.

4.2 Convergence speed at optimality

Let us increase the cardinality of the input data and simulate
a non correlated symmetric alphabet.
We illustrate in figure (2) the largest eigenvalues of ΓLMS,
and ΓCLMS, when the input belongs to a finite alphabet set.
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(a)Step size range
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(b) Zoom for small step size

Figure 2: Largest eigenvalues versus step size for a 32 states
alphabet

We observe, that for high step size varying until its criti-
cal value, λCLMS

max is lower than λ LMS
max .

However, when making a zoom for small step size range (fig-
ure 2-(b)), we see that λ LMS

max < λCLMS
max .

Even when the difference between the two eigenvalues is not
very significant, we find again the results of the classical ap-
proaches.
The MSE evolution in figure (3) is simulated for an adaptive
identification scheme with filter Hopt = 10, the initial con-
dition of H0 = 0.01 for both LMS and CLMS, doing 1000
Monte Carlo realizations.
We verify in figure (3) two results:

• A Classical result: Conventional LMS is faster than
CLMS using small step size assumption (figure(3-(a))

• An Unexpected result: Conventional LMS is slower than
CLMS as shown in (figure(3-(b)).
The comparison was done when algorithms are work-
ing at their best using the respective optimal step size
determined from the figure (2) as: µLMS

opt = 0.45 and
µCLMS

opt = 0.9.
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(a) Small step size, µ = 0.02
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(b) At optimality

Figure 3: Superiority of the CLMS versus LMS at optimality:
MSE evolution for two ranges of step size.

For the same previous identification case, and by chang-
ing the transition matrix P of the quantized data, we draw the
same conclusions at optimality.
Figure (4) emphasizes the fast convergence speed of the
CLMS, compared to the LMS.

We notice that the optimal step size values are calculated
from the largest eigenvalues of the matrices ΓLMS and ΓCLMS,
and are equal to µLMS

opt = 0.07 and µCLMS
opt = 0.85.

5. CONCLUSION

The main purpose of this paper was to deny the common
result that the conventional LMS is faster than the Clipped
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Figure 4: Second situation of fastness of the CLMS at opti-
mality, related to the transition matrix of the input

LMS (CLMS). Through the finite alphabet approach, with-
out using any of the classical assumptions, we have com-
pared the convergence speed of the two algorithms, and we
have determined exactly the dependence of the optimal step
size on the largest eigenvalues of the matrix that governs the
adaptive system.
It is worth to notice that it is possible to find other situa-
tions showing the unusual result that the CLMS is faster than
the LMS. It suffices to vary the characteristics of the alpha-
bet, namely its cardinality, its transition matrix P, which de-
fines the input signal statistics (correlation, probability den-
sity function).
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