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ABSTRACT

The multiple signal classification (MUSIC) algorithm for di-
rection of arrival estimation is defined for narrowband sce-
narios. In this paper, a generalisation to the broadband case
is presented, based on a description of broadband systems by
polynomial space-time covariance matrices. A polynomial
eigenvalue decomposition is used to determine the noise-
only subspace of the this matrix, which can be scanned by ap-
propriately defined broadband steering vectors. Two broad-
band MUSIC algorithm versions are presented, which re-
solve either angle of arrival alone or in combination with the
frequency range over which sources are active. Initial results
for these approaches are presented and demonstrate a signifi-
cant benefit over independent frequency bin processing using
narrowband MUSIC.

1. INTRODUCTION

The multiple signal classification (MUSIC) algorithm [10] is
a powerful and accurate technique for determining angles of
arrival in narrowband array processing applications. Since its
publication, the algorithm has found numerous applications
and inspired solutions ranging from spectrum estimation to
source localisation problems, see e.g. [5, 8].

While the original MUSIC algorithm has been defined
for the narrowband scenario, recently a number of efforts to
derive broadband algorithms for direction of arrival estima-
tion have been pursued. In [4], a discrete frequency domain
approach leads to a decoupling of source parameters such as
frequency and angle of arrival, over which estimation is per-
formed. A wideband time domain approach reported in [9] is
based on a Markov chain Monte-Carlo method. While [4, 9]
are broadband approaches but unrelated to the MUSIC al-
gorithm, [2, 3] introduce a parameterised spatial covariance
matrix, which depends on the angle of arrival ϑ , and sub-
sequently the relative time delay between array elements, as
a continuous variable. Based on this description, a number
of algebraic techniques including a broadband MUSIC algo-
rithm have been derived [1, 11, 12].

In this paper, we utilise a polynomial form of the space-
time covariance matrix in combination with a polynomial
eigenvalue decomposition (PEVD) derived in [7] to deter-
mine its signal-plus-noise and noise-only subspaces. Differ-
ent from [2], the covariancematrix and its decomposition are
discrete and finite, and the angle of arrival is a continuous
variable only in the definition of a broadband steering vector,
which is used to scan the noise-only subspace in MUSIC-
style.

In the following, we briefly review the narrowband MU-
SIC algorithm in Sec. 2. Sec. 3 reviews the polynomial

space-time covariance matrix, and then introduces a poly-
nomial steering vector which enable the proposed broadband
generalisation of the MUSIC algorithm. Two versions of the
proposed broadbandMUSIC algorithm, resolving sources ei-
ther spatially or spatio-spectrally, are demonstrated in Sec. 4
and compared to an independent frequency bin (IFB) ap-
proach, whereby a narrowband MUSIC algorithm is inde-
pendently applied in every frequency bin. Conclusions are
drawn in Sec. 5.

Notation. Vector and matrix quantities are represented by
lower and uppercase bold variables, respectively, such as a
and A. The Hermitian transpose of A is denoted as AH.
Polynomial vectors and matrices are written as a(z) and

A(z), with the parahermitian Ã(z) = AH(z−1). A trans-
form pair a[n] and A(z) = ∑∞

n=−∞a[n]z
−n is abbreviated as

a[n] ◦—• A(z).

2. NARROWBANDMUSIC

We first review the narrowband MUSIC algorithm, based on
a description of array data by steering vectors and the nar-
rowband spatial covariance matrix.

2.1 Array Signals and Steering Vector

Consider a vector of samples x[n] ∈ CM

x[n] =





x0[n]
x1[n]

...xM−1[n]



 , (1)

acquired by an M element sensor array at discrete time n. A
signal emerging from a single source arrives at these sensors
with time shifts due to the propagation delays as the wave-
front travels across the array. For simplicity, we here assume
the farfield case, with no amplitude difference between the
sensors due to attenuation in the medium. Taking the first
sensor signal, x0[n], as reference, the relative delays of the
remaining sensor signals can be characterised as

x[n] =









x0[n]
x0[n−∆τ1]

...
x0[n−∆τM−1]









. (2)

For a narrowband source with normalised angular frequency

Ω, with a reference signal x0[n] = e jΩn, the time delays ∆τm
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collapse to simple phase shifts

x[n] =









1

e− jΩ∆τ1

...

e− jΩ∆τM−1









e jΩ = aΩ,ϑ e
jΩ , (3)

where aΩ,ϑ is termed the narrowband steering vector.
Example. To derive the steering vector of a linear equidis-

tant array with critical sensor spacing d = λmin
2

= c
2 fmax

= c
fs
,

based on the propagation speed c in the medium and critical
sampling fs = 2 fmax. A source illuminates the array with a
complex exponential e jωt from an angle ϑ measured against
broadside. Once sampled at t = nTs = n

fs
, the reference sig-

nal e jΩn with normalised angular sampling rate Ω = ω/ fs
arrives with delays of ∆τ = λ sinϑ

c
= Ωsinϑ , such that

aΩ,ϑ =











1

e− jΩsinϑ

...

e− j(M−1)Ωsinϑ











. (4)

In the presence of L narrowband sources sl[n] charac-
terised by pairs {Ωl,ϑl}, the array vector is given by

x[n] =
L

∑
l=1

aΩl ,ϑl
sl [n]+v[n] , (5)

with independent and identically distributedwhite noise v[n],
such that E

{

v[n]vH[n− τ]
}

= δ [τ]σ2
v I.

2.2 Narrowband Covariance Matrix

If the signals can be characterised as narrowband with fre-
quency Ω, only correlations for lag zero need to be consid-
ered on the covariance matrix R ∈ CM×M ,

R = E
{

x[n]xH[n]
}

, (6)

where E {·} is the expectation operator. This covariance
matrix entirely describes the data as modelled in (5), since
for the case of L independent source signals of power σ2

l ,
l ∈ (1,L),

R =
L

∑
l=1

σ2
l aΩ,ϑl

aHΩ,ϑl
+ σ2

v I . (7)

The maximum rank of R isM, which is achieved in the case
of linear independence of all steering vectors.

If data is acquired over a data window of N samples, then
the data matrix

Xn = [x[n−N+1] . . .x[n−1] x[n]] (8)

can be used to estimate the covariance matrix as

R̂n =
1

N
XnX

H
n . (9)

While below the analysis is continued with R, an appropri-
ate estimation of this covariance matrix according to (9) is
assumed.

2.3 Narrowband MUSIC Algorithm

To retrieve the angles of arrival of sources from R, the ex-
traction of eigenvectors from R as steering vector estimates
can only be successful if all steering vectors in (7) are or-
thogonal. Otherwise, the eigenvalue decomposition (EVD)

R = [QsQn]

[

Λs 0
0 Λn

][

QH
s

QH
n

]

(10)

may extract the steering vector of the strongest source cor-
rectly, but otherwise contain orthonormalised basis vectors
of the signal subspace in Qs.

The idea of the MUSIC algorithm is to scan the noise-
only subspace Qn, characterised by eigenvalues close to the
noise floor, Λn ≈ σ2

v I. Steering vectors of sources contribut-
ing to R will define the signal-plus-noise subspace Qs and
therefore lie in the nullspace of its complement Qn. Thus,
the vector QH

n aΩ,ϑ has to be close to zero for aΩ,ϑ to be
a steering vector of a contributing source. The MUSIC al-
gorithm therefore calculates the inverse of the squared Eu-
clidean norm of this vector as the MUSIC spectrum PMU(ϑ),

PMU(ϑ) =
1

aHΩ,ϑQnQH
n aΩ,ϑ

, (11)

as proposed by [10].

3. BROADBANDMUSIC

To generalise (11) to the broadband case, we first define a
polynomial space-time covariance matrix, which can be de-
composed by McWhirter’s PEVD [7], followed by an appro-
priate selection of a broadband steering vector.

3.1 Space-Time Covariance Matrix

Unlike the narrowband case, time delays arising from signal
wavefronts travelling across the array at finite speed cannot
merely be represented by phase shift, but require to be ad-
dressed as lags. This motivates a polynomial space-time co-
variance matrix R(z) •—◦ R[τ],

R[τ] = E
{

x[n]xH[n− τ]
}

.

This power spectral matrix can be decomposed by an itera-
tive algorithm [7] to yield a polynomial EVD

R(z) = Q(z)Λ(z)Q̃(z) =
M−1

∑
m=0

λm(z)qm(z)q̃m(z)

with paraunitary Q(z), i.e. Q(z)Q̃(z) = I. The diagonal ma-
trixΛ(z) contains the polynomial eigenvalues λm(z). Thresh-
olding the latter reveals the number of independent broad-
band sources contributing to R(z), and permits a distinction
between signal-plus-noise and noise only subspaces,

R(z) = [Qs(z)Qn(z)]

[

Λs(z) 0
0 Λn(z)

][

QH
s (z)

QH
n (z)

]

(12)

similar to the narrowband EVD in (10). To probe the

nullspace of Q̃n(z),

Q̃n(z) =





q̃L(z)
...

q̃M−1(z)



 (13)
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a broadband steering vector is required instead of the narrow-
band one in (3).

3.2 Broadband Steering Vector

To accurately reflect the time delays required to describe
(2), a polynomial vector containing fractional delay trans-
fer functions is proposed here. One possibility to implement
these fractional delays is by means of an appropriately sam-
pled sinc function, such that

al[n] = sinc(nTs−∆τl) . (14)

With Al(z) •—◦ al[n], a broadband steering vector can be de-
fined as

aϑ (z) =





A0(z)
...

AM−1(z)



 . (15)

The parameter ϑ on the l.h.s. of (15) indicates the depen-
dency of ∆τl on the angle of arrival.

3.3 Polynomial MUSIC Algorithm

Following the rationale of the narrowband MUSIC algo-
rithm, the generalised quantity

Γϑ (z) = ãϑ (z)Qn(z)Q̃n(z)aϑ (z)

is no longer a norm measuring the vicinity of aϑ (z) to the

nullspace of Q̃n(z), but a power spectral density. This moti-
vates two versions of the a polynomial MUSIC (P-MUSIC)
algorithm, which are detailed next.
Spatial P-MUSIC. To measure the energy contained in

the signal vector Q̃n(z)aϑ (z), the auto-correlation-type se-
quence γϑ [τ] ◦—• Γϑ (z) provides a suitable quantity with
the zero lag term γϑ [0]. This measure only depends on the
angle of arrival ϑ , and collects all energy across the spec-
trum. Instead search for the steering vectors providing mini-
mum energy, the reciprocal

PSP−MU(ϑ) =
1

γϑ [0]
. (16)

is maximised by the angle of arrival ϑ of sources.
Spatio-Spectral P-MUSIC. Since (3.3) represent a power
spectral density term, spectral information can be exploited
in addition to the spatial clues extracted by (16). Therefore,

PSSP−MU(ϑ ,Ω) =

(

∞

∑
τ=−∞

γϑ [τ]e− jΩτ

)−1

(17)

not only localise sources with respect to ϑ , but can also de-
termine over which frequency range sources in the direction
defined by the steering vector aϑ (z) are active.

4. SIMULATIONS AND RESULTS

To assess the two P-MUSIC versions defined in (16) and
(17), first some controlled scenarios are presented to high-
light the ability for spatial discrimination of the proposed
method. Thereafter, a more complex scenario is tested for
(17) and benchmarked against an IFB MUSIC algorithm.
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Figure 1: Spatial P-MUSIC PSP−MU(ϑ) for a source located
at broadside (ϑ = 0◦).

4.1 Simple Angle-of-Arrival Scenarios

The broadband steering vector for a linear uniform array with
M = 4 sensors separated by distances d = c

fs
takes on simple

forms for the broadside and end fire directions, which are
evaluated below.
Example 1. Assuming a source at broadside, the steering
vector for anM = 4 element linear uniform array is given by

aϑ=0◦(z) = [1 1 1 1]T . (18)

If the source emits an uncorrelated random signal with zero
mean and unit variance, the resulting covariance matrix is

R1(z) = aϑ=0◦(z)ãϑ=0◦(z) =







1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1






.

(19)
This matrix has rank one, and the spatial P-MUSIC approach
is identical to the MUSIC except for the use of broadband
steering vectors in evaluating (16). The results for the latter
are given in Fig. 1.
Example 2. If instead of the above situation, the source is
located at end fire position ϑ = −90◦, the wavefront arrives
at each sensor delayed by exactly one sampling period, i.e.

aϑ=−90◦(z) = [1 z−1 z−2 z−3]T . (20)

As a result, the spatio-temporal covariance matrix is

R2(z) =









1 z1 z2 z3

z−1 1 z1 z2

z−2 z−1 1 z1

z−3 z−2 z−1 1









. (21)

The result for the spatial P-MUSIC algorithm is shown in
Fig. 2, correctly identifying the angle of arrival of the source.

Example 3. Assuming two independent sources, one at
broadside and the other at end-fire position, the space-time
covariance matrix is given by R3(z) = R1(z)+R2(z). The
Spatial P-MUSIC algorithm identifies two large polynomial
eigenvalues, and from the noise-only subspace, the spatial
P-MUSIC algorithm derives the result in Fig. 3.
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Figure 2: Spatial P-MUSIC PSP−MU(ϑ) for a single source
located at end fire (ϑ = −90◦).
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Figure 3: Spatial P-MUSIC PSP−MU(ϑ) for a scenario with
two independent sources of equal strength located at broad-
side and end fire positions.

4.2 Spatio-Spectral Estimation

An M = 8 element array is illuminated by two broadband
sources characterised as follows:

• source 1 — located at ϑ = 30◦, and active over a fre-
quency range Ω ∈ [0.3125π , 0.7812π ].

• source 2 — located at ϑ = −20◦, and active over a fre-
quency range Ω ∈ [0.4688π ,0.9375π ].

• the array signals are corrupted by independent and iden-
tically distributed complex Gaussian noise at 40dB SNR.

The source signals are simulated as a series of complex ex-
ponentials with randomised phases of 1000 samples length.
The delay with which the waveform propagates across the
array is implemented in the frequency domain by separately
implementing the steering vector defined in (4) for every
complex harmonic. The exact frequency locations of the
source components can be varied to coincide or not coin-
cide with the bin frequencies of an independent frequency
bin processor. The latter provides the inputs to independent
MUSIC algorithms operating in every frequency bin, which
are used to benchmark the proposed SSP-MUSIC method.

The IFB approach with source frequencies coinciding
with N = 64 bin frequencies is shown in Fig. 4. The result
highlights the very accurate retrieval of both sources both in
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Figure 4: Narrowband MUSIC applied to independent fre-
quency bins, for anM = 8 element array and bin frequencies
coinciding with those of the sources.
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Figure 5: Narrowband MUSIC applied to independent fre-
quency bins, for anM = 8 element array and bin frequencies
not coinciding with those of the sources.

terms of angle of arrival as well as their spectral range.

If the source frequencies do not coincide with bin fre-
quencies, the IFB approach is known to yield a very poor
worst-case performance [13], which is confirmed by the re-
sult in Fig. 5. The result exhibits a large number of spurious
components in the lower frequency range, and is unable to
extract the source at ϑ = 30◦ well.

The proposed spatio-spectral P-MUSIC approach (17) is
applied to the same data as the IFB processor in Fig. 5. The
result is shown in Fig. 6, and unlike Fig. 5 allows to accu-
rately extract both angles of arrival and frequency range of
the two contained broadband sources. The resolution is not
as sharp as the IFB processor with coinciding frequency bins,
which may be due to both the constructed nature of the IFB
setup, as well as the fact that the fractional delay filters im-
plementing the time delays associated with different angles
ϑ are not accurate across the entire frequency range [6].

It is important to note that while the IFB processor is
extremely sensitive to the location of the sinusoidal compo-
nents, the proposed SSP-MUSIC algorithm has been found
very robust.
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Figure 6: Spatio-Spectral P-MUSIC for the data analysed in
Fig. 5.

5. CONCLUSIONS

We have proposed a broadband generalisation of the classi-
cal narrowband MUSIC algorithm, based on a polynomial
covariance matrix, its polynomial EVD, and the definition of
polynomial steering vectors. The derived polynomial MU-
SIC approach offers to variations, either analysing the angle
of arrival only, or providing both spatial and spectral infor-
mation on the sources contributing to the space-time covari-
ance matrix.

In examples and simulations, we have highlighted some
of the properties and benefits of the proposed method, in par-
ticular with respect to the independent frequency bin proces-
sor operating separate narrowband MUSIC algorithms in ev-
ery frequency bin. This method was found to be very sensi-
tive to the exact location of frequency components within the
array data. In contrast, the proposed P-MUSIC algorithms
have shown to be very robust in terms of signal properties.

Compared to IFB MUSIC with coinciding sources and
frequency bins, the P-MUSIC algorithm is inferior. How-
ever, it is believed that further improvements in P-MUSIC
are possible by carefully selecting well-behaved fractional
delay filters [6] instead of the employed sinc functions.
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