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ABSTRACT

In this paper we propose a novel partial out-of-focus blur
removal method developed within the Bayesian framework.
We concentrate on the removal of background out-of-focus
blurs that are present in the images in which there is a strong
interest to keep the foreground in sharp focus. However, of-
ten there is a desire to recover background details out of such
partially blurred image. In this work, a non-convex lp-norm
prior with 0 < p < 1 is used as the background and fore-
ground image prior and a total variation (TV) based prior is
utilized for both the background blur and the occlusion mask,
that is, the mask determining the pixels belonging to the fore-
ground. In order to model transparent foregrounds, the val-
ues in the occlusion mask are assumed to belong to the closed
interval [0,1]. The proposed method is derived by utilizing
bounds on the priors for the background and foreground im-
age, the background blur and the occlusion mask using the
majorization-minimization principle. Maximum a posteriori
Bayesian inference is performed and as a result, the back-
ground and foreground image, the background blur, the oc-
clusion mask and the model parameters are simultaneously
estimated. Experimental results are presented to demonstrate
the advantage of the proposed method over the existing ones.

1. INTRODUCTION

It is not uncommon for the different objects or regions within
the original scene to move independently throughout the
scene by taking their own directions and velocities. There-
fore, often the blurring function spatially varies throughout
the image. Another example of a spatially varying blur is
the out-of-focus blur that is widely used to accentuate the
depth of field during image acquisition. In general, this type
of blurring does not fit well into the single-layer image for-
mation model (e.g., [1]), and consequently more advanced
image formation models are needed. The most common way
to remove the spatially varying blur is to consider acquir-
ing multiple images of the original scene [2, 3]. In some re-
cent methods a redesign of the imaging system is proposed.
For example, in [4] a fluttered shutter camera is proposed to
achieve a broader frequency response compared to the tradi-
tional imaging system. Note that the method in [4] still re-
quires knowledge of the moving object boundaries and object
velocities to successfully restore a partially blurred image.
In addition, a parabolic camera is proposed in [5, 6] in order
to minimize the information loss for 1D and 2D constant-
velocity motion, respectively. The restoration of partially
blurred images acquired by the traditional imaging systems
is still of great importance given that the majority of imaging
devices are traditional ones. For the reminder of the sec-

tion we concentrate on a two-layer image formation model.
The restoration method proposed in this paper is based on a
single-image observation, and therefore multiple captures of
the original scene are not required.

The standard formulation of the degradation model for
the partially blurred images in which only one layer is de-
graded is given in matrix-vector form by (please see [7] for
more details)

y =H f (o⊙x f )+ (Hbxb)⊙ (1−Hfo)+n, (1)

where the N × 1 vectors x f , xb, y, o and n represent re-
spectively the foreground image, the background image, the
available noisy and partially blurred image, the occlusion
mask and the noise with independent elements of variance
σ2
n
= β−1, while matricesH f andHb represent the blurring

matrices created from the blurring point spread functions (h f

and hb) of the foreground and background, respectively. The
images are assumed to be of size m× n = N, and they are
lexicographically ordered into N×1 vectors. The operator⊙
denotes the Hadamard product and 1 denotes the N× 1 col-
umn vector with all components equal to one. Given y, the
partially blurred image restoration problem calls for finding
estimates of x f , xb,H f ,Hb and o using prior knowledge on
them.

This paper is organized as follows. In Section 2 we pro-
vide the proposed Bayesian modeling of the partially blurred
image restoration problem. The Bayesian inference is pre-
sented in Section 3. Experimental results are provided in
Section 4 and conclusions drawn in Section 5.

2. BAYESIAN MODELING

The observation noise is modeled as a zero mean white Gaus-
sian random vector. Therefore, the observation model is de-
fined as

p(y|β ,x f ,h f ,xb,hb,o) ∝

βN/2 exp

[

−β

2
‖y−H f (o⊙x f )− (Hbxb)⊙ (1−Hfo)‖2

]

,

(2)

where β is the precision of the multivariate Gaussian distri-
bution.

In this work we assume that the foreground blur is avail-
able to us. We make this assumption since partially blurred
out-of-focus images are often encountered in portrait photog-
raphy (i.e., the foreground blur is a unit impulse) in which the
foreground is of very high visual quality. In general this as-
sumption works well in practice as can be seen in Section 4.
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In summary, the foreground blur h f is assumed to be
known (i.e., unit impulse), while the background image, the
foreground image, the background blur, the occlusion mask
and the model parameters are assumed to be unknown. Con-
sequently we can simplify the observation model defined in
(2) with

p(y|β ,x f ,h f ,xb,hb,o) ∝

βN/2 exp

[

−β

2
‖y−Dox f − (I−Do)Hbxb‖2

]

, (3)

where I denotes the identity matrix andDo denotes a diago-
nal matrix defined asDo = diag(o).

For the background image prior we utilize a variant of the
generalized Gaussian distribution, given by

p(xb|α) =
1

ZGG(α)
exp

[

− ∑
d∈D

αd ∑
i

|∆d
i (xb)|p

]

, (4)

where ZGG(α) is the partition function, 0 < p < 1, α de-

notes the set {αd} and d ∈ D = {h,v,hh,vv,hv}. ∆h
i (u) and

∆v
i (u) correspond to, respectively, the horizontal and vertical

first order differences, at pixel i, that is, ∆h
i (u) = ui− ul(i)

and ∆v
i (u) = ui−ua(i), where l(i) and a(i) denote the nearest

neighbors of i, to the left and above, respectively. The op-

erators ∆hh
i (u), ∆vv

i (u), ∆hv
i (u) correspond to, respectively,

horizontal, vertical and horizontal-vertical second order dif-
ferences, at pixel i.

In order to eliminate the need to estimate each αd we
assume that αh = αv = α and αhh = αvv = αhv = α/2. Ad-
ditionally, similarly to [8], the partition function will be ap-

proximated as ZGG(α) ∝ α−λ1N/p, where λ1 is a positive real
number. We then simplify (4) accordingly to obtain the fol-
lowing background image prior

p(xb|αb) ∝ α
λ1N/p
b exp

[

−αb ∑
d∈D

21−o(d)∑
i

|∆d
i (xb)|p

]

,

(5)
where o(d) ∈ {1,2} denotes the order of the difference oper-
ator ∆d

i (xb). Similarly, for the foreground image we assume
the following prior

p(x f |α f ) ∝ α
λ2N/p
f exp

[

−α f ∑
d∈D

21−o(d)∑
i

|∆d
i (x f )|p

]

,

(6)
where λ2 is a positive real number. For the background-
image blur we utilize a total-variation prior given by

p(hb|γb) ∝ γ
λ3N
b exp [−γbTV(hb)] , (7)

where λ3 is a positive real number and TV(hb) is defined as

TV(hb) = ∑
i

√

(∆h
i (hb))2+(∆v

i (hb))2. (8)

Similarly, for the occlusion mask we utilize a total-variation
prior,

p(o|γo) ∝ γλ4N
o exp [−γoTV(o)] , (9)

where λ4 is a positive real number and TV(o) is defined as

TV(o) = ∑
i

√

(∆h
i (o))

2+(∆v
i (o))

2. (10)

In this work we use flat improper hyperpriors for each
unknown hyperparameter, that is, we utilize

p(ω) ∝ const, (11)

where ω ∈ {β ,αb,α f ,γb,γo}.
3. BAYESIAN INFERENCE

Bayesian inference on the unknown components of the
partially blurred image restoration problem is based on
the estimation of the unknown posterior distribution
p(αb,α f ,β ,γb,γo,xb,hb,o,x f | y,h f ), given by

p(αb,α f ,β ,γb,γo,xb,hb,o,x f | y,h f ) =

p(αb,α f ,β ,γb,γo,xb,hb,o,y,x f ,h f )

p(y,h f )
. (12)

In this work, we adopt the maximum a pos-
teriori (MAP) approach to obtain a single point

(ᾱb, ᾱ f , β̄ , γ̄b, γ̄o, x̄b, x̄ f , h̄b, ō) estimate, denoted as Θ̄,
that maximizes p(αb,α f ,β ,γb,γo,xb,x f ,hb,o | y,h f ) as
follows,

Θ̄ = argmax
Θ

p(αb,α f ,β ,γb,γo,xb,x f ,hb,o | y,h f )

=min
Θ

{

β

2
‖y−Dox f − (I−Do)Hbxb‖2+

+αb ∑
d∈D

21−o(d)∑
i

|∆d
i (xb)|p+α f ∑

d∈D
21−o(d)∑

i

|∆d
i (x f )|p+

+γbTV(hb)+ γoTV(o)−
λ1N

p
logαb−

λ2N

p
logα f

−N

2
logβ −λ3N logγb−λ4N logγo

}

.

(13)

As can be seen from (13), obtaining the point
estimate that maximizes the posterior distribution
p(αb,α f ,β ,γb,γo,xb,x f ,hb,o | y,h f ) is not straight-
forward since it requires the minimization of a non-convex
functional. Note that maximizing the posterior distribution
p(αb,α f ,β ,γb,γo,xb,x f ,hb,o | y,h f ) with the maximum a
posteriori approach is equivalent to the variational Bayesian
based maximization (see [9]) for the example case when all
the posterior distributions are assumed to be degenerate.

In this paper, we resort to a majorization-minimization
approach to bound the non-convex image prior p(xb|αb) by
the functional M1(αb,xb,V), that is

p(xb|αb)≥ const · M1(αb,xb,V). (14)

The majorization-minimization approach has been utilized in
several approaches for image restoration [9, 10].

The functional M1(αb,xb,V) is derived by considering
the relationship between the weighted geometric and arith-
metic means, which is given by

zp/2v1−p/2 ≤ p

2
z+

(

1− p

2

)

v, (15)
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where z,v and p are positive real numbers. We first rewrite
(15) as

zp/2 ≤ p

2

z+ 2−p
p
v

v1−p/2
. (16)

Using (16) we obtain

|∆d
i (xb)|p ≤

p

2

[∆d
i (xb)]

2+ 2−p
p
vd,i

v
1−p/2
d,i

. (17)

Therefore we have

p(xb|αb)= const·αλ1N/p
b exp

[

−αb ∑
d∈D

21−o(d)∑
i

|∆d
i (xb)|p

]

≥ const·αλ1N/p
b exp



−αbp

2
∑
d∈D

21−o(d)∑
i

[∆d
i (xb)]

2+ 2−p
p
vd,i

v
1−p/2
d,i



 .

(18)

and so M1(αb,xb,V) is defined as

M1(αb,xb,V) =

α
λ1N/p
b exp



−αbp

2
∑
d∈D

21−o(d)∑
i

[∆d
i (xb)]

2+ 2−p
p
vd,i

v
1−p/2
d,i



 ,

(19)

where V is a matrix with elements vd,i. Following the same
approach, the foreground image prior can be bounded by

p(x f |α f )≥ const · M2(α f ,x f ,B). (20)

where B is a matrix with elements bd,i > 0 andM2(α f ,x f ,B)
is defined as

M2(α f ,x f ,B) =

α
λ2N/p
f exp



−α f p

2
∑
d∈D

21−o(d)∑
i

[∆d
i (x f )]

2+ 2−p
p
bd,i

b
1−p/2
d,i



 .

(21)

Similarly, the majorization-minimization criterion is
used to bound the blur prior p(hb|γb) utilizing the functional
M3(γb,hb,u). Let us define, for γb and any N−dimensional

vector u ∈ (R+)N , with components ui, i= 1, . . . ,N, the fol-
lowing functional

M3(γb,hb,u)= γ
λ3N
b exp

[

− γb
2

∑
i

(∆h
i (hb))

2+(∆v
i (hb))

2+ ui√
ui

]

.

(22)
Using the inequality in (16) with p = 1, for z ≥ 0 and

v> 0
√
z≤

√
v+

1

2
√
v
(z− v), (23)

we obtain

p(hb|γb)≥ const · M3(γb,hb,u). (24)

Once again, the majorization-minimization criterion is
used to bound the occlusion mask total variation prior
p(o|γo) utilizing the functional M4(γo,o,z), such that,

p(o|γo)≥ const · M4(γo,o,z), (25)

where

M4(γo,o,z) = γλ4N
o exp

[

− γo
2

∑
i

(∆h
i (o))

2+(∆v
i (o))

2+ zi√
zi

]

,

(26)
and z ∈ (R+)N is an N−dimensional vector.

The lower bounds of p(xb|αb), p(x f |α f ), p(hb|γb) and
p(o|γo) defined above lead to the following lower bound of
the distribution p(αb,α f ,β ,γb,γo,xb,hb,o,y,x f ,h f ),

p(αb,α f ,β ,γb,γo,xb,hb,o,y,x f ,h f )= p(αb)p(α f )p(β )p(γb)

p(γo)p(xb|αb)p(x f |α f )p(hb|γb)p(o|γo)p(y|β ,xb,hb,x f ,h f ,o)≥
const·M1(αb,xb,V)M2(α f ,x f ,B)M3(γb,hb,u)M4(γo,o,z)

p(y|β ,xb,hb,x f ,h f ,o).

Therefore, a single point estimate that maxi-
mizes a lower bound of the posterior distribution
p(αb,α f ,β ,γb,γo,xb,x f ,hb,o | y,h f ) is found as fol-
lows

Θ̄ =min
Θ

{

β

2
‖y−Dox f − (I−Do)Hbxb‖2+

αbp

2
∑
d∈D

21−o(d)∑
i

[∆d
i (xb)]

2+ 2−p
p
vd,i

v
1−p/2
d,i

+

α f p

2
∑
d∈D

21−o(d)∑
i

[∆d
i (x f )]

2+ 2−p
p
bd,i

b
1−p/2
d,i

+

γb
2

∑
i

(∆h
i (hb))

2+(∆v
i (hb))

2+ ui√
ui

+

γo
2

∑
i

(∆h
i (o))

2+(∆v
i (o))

2+ zi√
zi

+

−λ1N

p
logαb−

λ2N

p
logα f+

−N

2
logβ −λ3N logγb−λ4N logγo

}

.

(27)

Using (27) for all unknowns in an alternating fashion, we
obtain the final algorithm as shown below.

Algorithm. Given α1
b ,α

1
f ,β

1,γ1b ,γ
1
o ,o

1,u1,z1,x1
f ,B

1 and V1,

where the rows of Vk and Bk are denoted by vk
d ∈ (R+)N and

bk
d ∈ (R+)N respectively, with d ∈ {h,v,hh,vv,hv} and initial

estimate of the blurring filter h1
b.

For k= 1,2, . . . until a stopping criterion is met:
1. Calculate

xk
b =

[

β k(Dk
bH

k
b)

t(Dk
bH

k
b)+αk

b p∑
d

21−o(d)(∆d)tWk
d(∆

d)
]−1

×β k(Dk
bH

k
b)

t(y−Dk
ox

k
f ), (28)

where Wk
d is a diagonal matrix with entries Wk

d(i, i) =

(vkd,i)
p/2−1, Dk

o is a diagonal matrix defined as Dk
o =

diag(ok) andDk
b = I−Dk

o.
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2. Calculate

hk+1
b =

[

β k(Dk
bX

k
b)

t (Dk
bX

k
b)+ γkb ∑

d∈{h,v}
(∆d)tUk(∆d)

]−1

×β k(Dk
bX

k
b)

t(y−Dk
ox

k
f ), (29)

where Uk is a diagonal matrix with entries Uk(i, i) =

(uki )
−1/2 and Xk

b denotes a convolution matrix created

from the background image estimate xk
b.

3. Calculate

ok+1 =

[

β k(Hk+1
o )t(Hk+1

o )+ γko ∑
d∈{h,v}

(∆d)tZk(∆d)

]−1

×β k(Hk+1
o )t(y−Hk+1

b xk
b), (30)

where Zk and Hk+1
o are diagonal matrices defined

as Zk(i, i) = diag((zki )
−1/2) and Hk+1

o = diag(xk
f ) −

diag(Hk+1
b xk

b).
4. Calculate

xk+1
f =

[

β k(Dk+1
o )t(Dk+1

o ) (31)

+αk
f p∑

d

21−o(d)(∆d)tWk
d(∆

d)

]−1

×β k(Dk+1
o )t(y−Dk+1

b Hk+1
b xk

b), (32)

where Wk
d is a diagonal matrix with entries Wk

d(i, i) =

(bkd,i)
p/2−1.

5. For each d ∈ {h,v,hh,vv,hv} calculate

vk+1
d,i = [∆d

i (x
k
b)]

2, (33)

bk+1
d,i = [∆d

i (x
k
f )]

2, (34)

6. Calculate

uk+1
i = [∆h

i (h
k+1
b )]2+[∆v

i (h
k+1
b )]2, (35)

zk+1
i = [∆h

i (o
k+1)]2+[∆v

i (o
k+1)]2, (36)

7. Calculate

αk+1
b =

λ1N/p

∑d∈D 21−o(d)∑i |∆d
i (x

k
b)|p

, (37)

αk+1
f =

λ2N/p

∑d∈D 21−o(d)∑i |∆d
i (x

k+1
f )|p

, (38)

β k+1 =
N

‖ y−Dk+1
o xk+1

f −Dk+1
b Hk+1

b xk
b ‖2

,(39)

γk+1
b =

λ3N

TV(hk+1
b )

, (40)

γk+1
o =

λ4N

TV(ok+1)
. (41)

Set restored image, x̂,

x̂= lim
k→∞

{Dk+1
o xk+1

f +(I−Dk+1
o )xk

b}. (42)

In this work we set the values of the parameters p, λ1, λ2,
λ3, and λ4 equal to 0.8, 0.5 1.0 0.5 and 0.5, respectively. The
robustness of the proposed method will be tested and evalu-
ated by restoring the partially blurred images photographed
by a commercial camera. Additionally, since the proposed
algorithm is initialized with the unit impulse as the initial
background blur estimate, it is particularly important in the
first few iterations to keep parameters αb and γb relatively
high compared to the parameter β . This procedure prevents
the proposed algorithm from converging to the undesirable
background blur estimate of unit impulse.

4. EXPERIMENTAL RESULTS

In this section we present experimental results obtained with
the use of the proposed algorithm. For all experiments, the
initial background blur was set to the unit impulse, and the
proposed algorithm is terminated if the termination criterion

‖xk
b−xk−1

b ‖/‖xk−1
b ‖ < 10−4 is satisfied or if the maximum

number of iterations reaches 100. After updating the un-
knowns, as described in Section 3, we apply known domain
constraints and truncate the background blur estimate, the
background and foreground image (both images are normal-
ized) estimate and the occlusion mask to an interval [0,1]. In
addition, the occlusion mask is initialized with a user defined
trimap (available at alphamatting.com) and the blur estimate
is normalized (after truncation) so that the sum of its ele-
ments equals one. A trimap is a popular way [11, 12] to ini-
tialize the alpha matting algorithms in which the black color
defines a clear background, the white color defines a clear
foreground and the gray color defines an unknown region of
the occlusion mask that has to be estimated. Some examples
of the user defined trimap are shown in Figure 1.

Figure 1: Example of initial estimates of the occlusion mask
(trimaps from alphamatting.com).

We evaluate the performance of the proposed method
on the images taken by a commercial camera. The
test images used in this section are available online
(www.alphamatting.com). In [13], the authors compared dif-
ferent partial blur removal methods [14–16]. In this work
we consider for the comparison the best performing method
reported in [13]. Example restorations obtained by the pro-
posed algorithm are shown in Figure 2. It is clear from Fig-
ure 2 that the proposed algorithm provides restorations with
high visual quality that are very competitive with the existing
state-of-the art method proposed in [13].

5. CONCLUSIONS

In this paper a novel partially blurred image restoration algo-
rithm is presented. More specifically, the focus of this paper
was to remove partial out-of-focus background blur that is
often present in images with sharp in focus foreground. The
proposed algorithm was developed within a Bayesian frame-
work utilizing an lp-norm based sparse prior for the back-
ground and foreground image, and a total-variation prior for
both the background blur and the occlusion mask. Restora-

1676



Figure 2: Example restorations from alphamatting.com: 1st
column represents nine different partially blurred observa-
tions, 2nd column represents restorations obtained by the
proposed algorithm, 3rd column represents restorations ob-
tained by the method proposed in [13].

tions of the partially blurred images taken by a commercial
camera demonstrate that using sparse priors and the proposed
parameter estimation can substantially improve the quality of
the observed partially blur image. Finally, it was shown that
the performance of the proposed algorithm is higher than ex-
isting state-of-the-art blind partially blurred image restora-
tion algorithms. Future work includes extending the pro-
posed method for the restoration of partially blurred images
in which the foreground part of the observed image is not in
sharp focus (e.g., when the foreground is in motion).
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