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ABSTRACT

Non-negative blind signal decomposition methods are
widely used for musical signal processing tasks, such as au-
tomatic transcription and source separation. A spectrogram
can be decomposed into a dictionary of full spectrum basis
atoms and their corresponding time activation vectors using
methods such as Non-negative Matrix Factorisation (NMF)
and Non-negative K-SVD (NN-K-SVD). These methods are
constrained by their learning order and problems posed by
overlapping sources in the time and frequency domains of
the source spectrogram. We consider that it may be possible
to improve on current results by providing prior knowledge
on the number of sources in a given spectrogram and on the
individual structure of the basis atoms, an approach we re-
fer to as structure-aware dictionary learning. In this work
we consider dictionary recoverability of harmonic atoms, as
harmonicity is a common structure in music signals. We
present results showing improvements in recoverability using
structure-aware decomposition methods, based on NN-K-
SVD and NMF. Finally we propose an alternative structure-
aware dictionary learning algorithm incorporating the advan-
tages of NMF and NN-K-SVD.

1. INTRODUCTION

Signals are often represented as a collection of atoms in some
signal transform:

Y=Y a5 &)
A

where y is the signal, A = {a, } is a dictionary of atoms, x is a
coefficient vector or matrix, and A € A, where A is the index
set of coefficients. Sparse coding seeks to represent the sig-
nal with few non-zero coefficients. This may be achieved by
using overcomplete dictionaries consisting of different bases
which better represent different signal elements. Alterna-
tively dictionaries of basis atoms can be used. Sparse coding
requires solution of the following:

min||x|lo sz y=Ax. 2)

This problem is NP-hard and many different strategies have
been proposed for the purpose of sparse coding including
greedy methods such as Matching Pursuit (MP) [8] and
global optimization methods, such as Basis Pursuit (BP).
Sparse representations have been seen to be useful for many
audio applications, such as source separation and coding [9].

Blind signal decomposition methods can be used to learn
basis atoms from a given signal. Given a magnitude spectro-
gram S, we seek a non-negative matrix decomposition such
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that:
S~ DT 3)

where S € EKZEXN ,De ER%XK ,T e WEXN, M is the number
of frequency bins, N is the number of time bins and K is the
order of the decomposition. Here D is a dictionary matrix
with a spectrum basis atom in each column, while the rows
of T contain the time support vectors for the atoms.

The most popular method for performing the decompo-
sition in (3) is Non-negative Matrix factorisation NMF [7].
An alternative method is NN-K-SVD [1], a non-negative
variation on the popular K-SVD sparse dictionary learning
method. These two methods were compared in [2] for the
task of automatic music transcription, with NMF outper-
forming NN-K-SVD. A similar result was demonstrated in
[10] for the task of harmonic dictionary recovery.

In transcription tasks using blind signal decomposition
the approximation that each atom contains sound from one
source is used. This is often not the case due to temporal and
frequency overlap in the spectrogram and are constrained by
the predetermined number of atoms to be learnt, or learning
order. When the learning order is small, we observe atoms
containing two pitched sources. When the learning order
is large, atoms in which the energy is focussed in a single
spike may appear, due to overlap in the frequency domain
of sources of different pitches. Many musical sources dis-
play harmonicity and several works aim to incorporate this
structure with sparse coding or blind signal decompositions.

Gribonval and Bacry present Harmonic Matching Pur-
suit (HMP), which performs sparse coding on a signal over
a dictionary of harmonic atoms in [5]. Carabias-Orti et al
[4] extend HMP, using spectral smoothness constraints and
clustering of extracted harmonic atoms, in order to learn a
dictionary of harmonic atoms from the signal, which is used
to perform polyphonic transcription. Vincent et al introduced
Harmonic NMF in [11], utilising a harmonic filtering on each
of the set of basis atoms after each iteration of NMF. In [10],
a variable length harmonic dictionary learning method was
proposed, which learned new atoms one at a time from a sig-
nal. The atoms were filtered with harmonic combs tuned to
their estimated pitch.

In this paper we consider the task of harmonic dictio-
nary recovery. We show the use of Non-Negative Order Re-
cursive Matching Pursuit (NN-ORMP) for the sparse coding
step in NN-K-SVD improves the performance. We imple-
ment structure-aware versions of NN-K-SVD and NMF. We
show that structure-aware dictionary learning significantly
improves the results for dictionary recovery. Finally, we note
the relative advantages of structure-aware NN-K-SVD and
NMF and propose a method that incorporates the advantages
of both.
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2. BACKGROUND

2.1 Non-Negative Blind Decompositions

NMEF([7] seeks the approximation in (3) by minimising the er-
ror on the relationship between the data matrix and its recon-
struction. The Frobenius norm is commonly used to measure
the error, but other cost functions can be used. A typical al-
gorithm for NMF is an iterative algorithm which alternately
updates the dictionary and the coefficient matrix using mul-
tiplicative updates, which ensure non-negativity.

NN-K-SVD [1] applies the added constraint of sparsity to
the approximation in (3). This is achieved through a two-step
iterative algorithm that alternatively seeks to minimize the re-
construction error norm of the matrix S and the norm of 7.
Minimisation of the norm of T is performed by sparse cod-
ing. Any non-negative sparse coder can be used. The other
step of the algorithm is the dictionary update stage, which
differs from NMF in that each atom is updated individually.
Each atom is selected, and a rank one singular value decom-
position (SVD) is performed on the sum of the reconstruction
error and the atom contribution, over that atom’s support in
the time domain.

2.2 Non-Negative Sparse Coding

In [1] Non-negative Basis Pursuit (NN-BP) is proposed
which is based on the non-negative sparse coding scheme
in [6]. Given D, NN-BP performs several iterations of a
multiplicative update to estimate 7. Then the L atoms with
the largest non-zero coefficients in each column of T are se-
lected to give an L-sparse support set. The coefficients of the
support set are then calculated by minimization of the least-
squares error.

Non-Negative Orthogonal Matching Pursuit (NN-OMP)
is proposed in [3]. This is a variation of the greedy itera-
tive OMP algorithm. Similar to OMP, at each iteration the
atom that is most correlated with the residual signal is se-
lected and added to the support. Then the coefficients of all
support atoms are calculated through least-squares analysis.
The residual signal is updated by subtracting the signal con-
tribution of the selected atoms from the original signal.

2.3 Harmonic Atoms

Harmonic atoms are introduced in [5]. A harmonic atom is a
group of harmonically related Gabor atoms, whose correla-
tion with a signal r is given by:

C

|h(f0)>r| = Z max

c=1 fc5|fc—Cf0‘§%

[(g(f.),r)[? )

where £ is a harmonic atom with fundamental frequency fj,
a is the frequency resolution, C is the number of harmonics
considered and g(f) is a Gabor atom of frequency f. The
harmonic atom is the set of local maximums, f. which con-
tribute to the expression in (4). In practice, this group is ex-
tended to include the sidelobes of the peaks, which are shown
here with a width of 1:

Harmonic atoms have an implicit fundamental frequency,
fo(h), and can be used for pitch estimation. However, typi-
cal pitch estimation problems such as octave jumping may be
encountered, and HMP [5] suffers from overlapping partials
being assigned to one atom.

3. PROPOSED METHOD
3.1 Harmonic NN-K-SVD

We propose a harmonic variation NN-K-SVD, using the as-
sumption that each note or pitch is represented by one atom.
We assume for this work a prior harmonic analysis providing
knowledge of the learning order, K, and a binary harmonic
structure matrix, /, which is used to constrain the subsequent
learning. With a signal that is known or estimated to contain
a group of pitches or notes and with knowledge of the mem-
bers of the set of corresponding harmonic atoms H = {h},
we define 7 as follows:

|1, where f € Iy
Irk= {0, otherwise . ©)

The proposed algorithm is presented in Algorithm 1. It dif-
fers from NN-K-SVD only through the input of the indica-
tor matrix and in the final dictionary update step when the
learned atom dj is filtered by its corresponding indicator vec-
tor i.

Algorithm 1 Harmonic NN-K-SVD

Input
1€ {0, 1}MxK 5 g ¢ RYM
Initialise
T0=0;D e RM*; D Dol
repeat
Sparse code using pursuit algorithm
minz {||S —DT||§} st |tllo=L
Update Dictionary
for k={1,2...K} do
wi = {n|1(n) > 0}
E = (S— (DT — dytp))™
E* =UAVT
th="V;
di +— U®iy
end for
until stopping condition met

3.2 Non-Negative Order Recursive Matching

In this non-negative framework, we modified Order Recur-
sive Matching Pursuit (ORMP) to be non-negative using the
Isgnonneg function in Matlab. NN-ORMP differs from NN-
OMP][3] only in that it selects the candidate atom which when
added to the support set minimises the least-squares error
over the spectrogram S while NN-OMP[3] selects the atom
which minimises the error over the residual error. This can
be seen by replacing the second and third lines in the repeat
loop in Algorithm 2 with:

Ey = ming||dite — R (|3 @)

where R is the residual at iteration i. to implement NN-OMP.

We note the heavy use of non-negative least-squares in
NN-ORMP. This function is also used in NN-OMP and in
NN-BP. In this work we replaced the Matlab Isgnonneg func-
tion with a multiplicative update estimate of the non-negative
least squares, which we observed to provide a speedup with-
out detriment to the results.

1762



Algorithm 2 NN-ORMP

Input

D € RMK; 5 € RN
Initialise

i=0;/0=87T=0;T0={};
repeat

i=i+1

I =T""1"Uk,Vk¢ !

Ey = ming | Dr, Tr, - S|3

k' = argming Ej,

'=Tr"1uK

T' = ming ||DpTri — S|)3; T >0
until stopping condition met

3.3 Harmonic NMF

Harmonic NMF (H-NMF) was used in [11] for the purpose
of polyphonic transcription. We implement our version of
this algorithm which, similar to H-NN-K-SVD (Alg. 1), in-
corporates prior information and is constrained in its learn-
ing through the use of the binary structure indicator matrix, /1.
The algorithm is described in Algorithm 3, where the learn-
ing iterates through two multiplicative updates, with / incor-
porated in the second of these.

Algorithm 3 Harmonic NMF

Input
1€ {0, 1}MxK g ¢ RUXN
Initialise
70 € REN; DO € JAK
repeat
T+—ToD'SoD'DT
D<—DoloTS @DTT'
until stopping condition met

4. EXPERIMENTS

We synthesise a set of spectrograms from an input dictionary
and a coefficient matrix, to compare the algorithms. Given
the spectrogram, the decompostion algorithms seek to find
the original input dictionary. We decompose the spectro-
grams using NMF, NN-K-SVD, H-NMF and H-NN-KSVD.
For the NN-K-SVD based algorithms we perform the decom-
positions using both NN-BP and NN-ORMP, separately. We
provide a binary indicator matrix (6), derived from the input
dictionary for the harmonic versions of all algorithms. All
algorithms are run for the same number of iterations, which
we set to 100.

We measure the success of the dictionary recovery by
correlating the learned dictionary with the synthesised input
dictionary using atomwise similarity. We consider two unit
norm atoms having an inner product of greater than 0.9 as
being strongly correlated. For each atom in the original dic-
tionary, for which there exists a strongly correlated atom in
the learned dictionary we assign a hit. We define Accuracy =
average hits per run as the main measure of performance. We
also record the average maximum correlation measure. For
each atom, gy, in the input dictionary A, we consider only its
largest correlation r; = max;{ayd;) with the dictionary atoms
d;. We define the correlation between the input and learned

dictionaries:
K
Y17k
K
and record Correlation as the mean of p over all runs.

p= @®)
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4.1 Experiment 1

We use a similar experimental setup as that in [10]. First
K synthetic harmonic atoms, see (Fig. I) are created for a
range of pitches with a fixed spectral envelope used to define
the relative amplitudes of the harmonic partials. The side-
lobes consist of one frequency bin on either side of the main
harmonic partial whose amplitudes are defined by a Gaussian
centred on the main partial. A coefficient matrix is synthe-
sised by randomly selecting L atoms at each of N time bins
and setting their coefficient values to one. The spectrogram
is calculated from the product of the dictionary and the co-
efficient matrix. A sample time bin from one of the spectro-
grams is shown in Fig. 2. For this experiment here we set
K=10,L=5and N = 100.
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| Algorithm | Accuracy | Correlation | | Algorithm | Accuracy | Correlation |
NMF 6.95 0.92 NMF 5.75 0.88
NN-KSVD(BP) 6.65 0.95 NN-K-SVD(BP) 5.45 0.88
NN-KSVD(ORMP) 1.75 0.95 NN-K-SVD(ORMP) 6.50 0.92
H-NMF 9.99 0.99 H-NMF 7.99 0.93
H-NN-KSVD(BP) 10.0 1.00 H-NN-KSVD(BP) 9.20 0.98
H-NN-KSVD(ORMP) 9.99 0.99 H-NN-KSVD(ORMP) 8.02 0.94

Table 1: Results from Experiment 1

| Algorithm | Accuracy | Correlation |
NMF 9.55 0.98
NN-KSVD(BP) 8.78 0.97
NN-KSVD(ORMP) 8.71 0.97
H-NMF 10.0 0.99
H-NN-KSVD(BP) 10.0 0.99
H-NN-KSVD(ORMP) 10.0 0.99

Table 2: Results from Experiment 2

4.2 Experiment 2

We changed the parameters of the synthetic dictionary by al-
tering the atom shapes. In Experiment I the atom coefficients
were set by a fixed spectral envelope. In Experiment 2 we
set the atom coefficients randomly, and filter to maintain the
harmonic structure. We use the same values of K, N and L as
those used in Experiment 1.

4.3 Experiment 3

For this experiment, we used the same atoms as used in Ex-
periment I but decreased the support to L = 4 at each time
bin and skewed the distribution of the atom supports in the
spectrogram, contrary to the random distributions used in the
other experiments. The atoms were randomly ordered and
the following support set cardinality applied:

ITw| = {90,80,70,70,60,10,8,6,4,2}. ©)

5. RESULTS

We observe the results of Experiment I in Table 1. We see in
the first part of the table that the use of NN-ORMP causes a
large change in the performance of NN-K-SVD, surpassing
that of NMF. The second part of the table presents the results
of the structure-aware methods. We can see that all methods
perform well, with almost complete recovery.

In Table 2 we see again the that the structure-aware ver-
sions of the algorithms achieve high accuracy, with hits for
all atoms. All the unstructured algorithms perform better
than in Experiment 1 suggesting that the fixed spectral enve-
lope causes some problems for unconstrained learning. NMF
performs better than NN-K-SVD, regardless of the sparse
coding algorithm used. In this experiment NN-ORMP and
NN-BP perform similarly.

Table 3 shows the results from Experiment 3, which con-
tains the spectrograms with skewed atom support size. We
can see that the results for all methods degrade relative to
previous experiments. Having atoms with a small support set
presents a greater problem to all algorithms. These results are
similar to those in Experiment 1 in that NMF performs better
than NN-K-SVD(BP) but worse than NN-K-SVD(ORMP).

Table 3: Results from Experiment 3

There is a notable difference in the performance of H-NN-K-
SVD with relation to the sparse coder used, with NN-BP pro-
viding superior performance. We observe that NN-ORMP
sometimes lost support for some atoms in the coefficient ma-
trix, contributing to the error found with the algorithm.

The results in general suggest that dictionary recover-
ability is greatly enhanced by the incorporation of structure
awareness, although this is expected due to the prior informa-
tion supplied. Another feature of these experiments was the
speed with which the learned dictionaries converged towards
the input dictionaries when using the structure-aware meth-
ods for the first two experiments. Often less than twenty iter-
ations were required to recover all atoms using the accuracy
criteria set above, in particular when using the NN-K-SVD
with NN-ORMP, in contrast to the performance of the algo-
rithm in Experiment 3. We note that NMF is significantly
faster per iteration than the NN-K-SVD.

6. UPDATED METHOD

We can see from the results that H-NMF and H-NN-KSVD
both perform almost perfectly in the first two experiments.
However, we notice, in general a divergence between the
NMF and NN-K-SVD performances. NMF performs better
in Experiment 2 and seems more robust to variability in the
atom shape, while H-NN-K-SVD is more robust to uneven-
ness in the distribution of atom support size. It is presumed
that the sparse coding enables the NN-K-SVD to quicker ap-
proximate the support of the dictionary in the spectrogram,
which is a strength of the algorithm, while the relative in-
crease in performance of the NMF when faced with variable
shaped atoms suggests that the multiplicative update may up-
date the dictionary more efficiently.

Based on this observation, we propose a Structure-
Aware Non-Negative Sparse Multiplicative Update Dictio-
nary Learning (SA-NN-S-MUDL), which is described in Al-
gorithm 4 and uses elements from both NMF and NN-K-
SVD. It is a two-step iterative algorithm which updates the
coefficient matrix by sparse coding, and uses the global mul-
tiplicative update stage from NMF to update the dictionary.

Using this method we decompose the spectrograms in
Experiment 2 and Experiment 3. We use NN-BP and NN-
ORMP, separately. The results from these experiments are
displayed in Table 4. Here we can see that the proposed
method finds hits for all atoms in Experiment 2, similar to
NMF and NN-K-SVD. However, the proposed method im-
proves on all other methods for Experiment 3. We can see
here again a better performance while using the NN-BP for
this experiment.
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Algorithm 4 SA-NN-S-MUDL Algorithm
Input
1€ {0, 1}M*K 5 ¢ RMXN
Initialise
70 =0; D € RM*K
repeat
Sparse code using pursuit algorithm
ming{||S—DT|3} st |tallo=L
Update Dictionary
D<+—DoloTS @DTT’
until stopping condition met

| Algorithm [ Accuracy | Correlation |
Experiment 2
SA-NN-S-MUDL/(BP) 10.0 1.0
SA-NN-S-MUDL(ORMP) 10.0 1.0
Experiment 3
SANNSMUDL-BP 9.86 0.99
SANNSMUDL-ORMP 9.17 0.97

Table 4: Results with updated method on spectrograms from
Experiment 2 and Experiment 3

7. CONCLUSIONS AND FURTHER WORK

We have shown the advantages of structure-aware dictionary
learning, and have derived a structure-aware non-negative
dictionary learning method, which improves the dictionary
recovery for the learning of harmonic atoms. We believe this
improvement is due to sparsity reducing the noise in the coef-
ficient matrix, while the global multiplicative update for the
dictionary is smoother than the K-SVD when there is large
overlap in the atom supports, as the error is treated glob-
ally, countering the interaction element of K-SVD. We in-
tend to further explore the use of this method, incorporating
other metrics, testing on noisy datasets and using structures
other harmonic. Similar work which incorporates sparsity
and NMF, such as [6], will be compared.

Further investigation may be required on the use of non-
negative sparse coding. While NN-ORMP seems effective
in atom selection, even when handling largely overlapping
atoms, it is computationally demanding, due to the least-
squares analysis for each candidate atom being performed
over multiple atoms.

The work shown in this paper is part of a larger work of
building a transcription system using signal-adaptive sparse
non-negative dictionary learning, and some of the findings
here are consistent with our experience, such as the disap-
pearance of atoms with a small support set. We built these
noiseless experiments in order to test the methods, and in-
vestigate their limitiations for tasks such as transcription.
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