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ABSTRACT
Volterra filtering and polynomial regression are two widely utilized
tools for nonlinear system modeling and inference. They are both
critically challenged by the curse of dimensionality, which is typ-
ically alleviated via kernel regression. However, exciting diverse
applications ranging from neuroscience to genome-wide associa-
tion (GWA) analysis call for parsimonious polynomial expansions
of critical interpretative value. Unfortunately, kernel regression can-
not yield sparsity in the primal domain, where compressed sam-
pling approaches can offer a viable alternative. Following the com-
pressed sampling principle, a sparse polynomial expansion can be
recovered by far fewer measurements compared to the least squares
(LS)-based approaches. But how many measurements are sufficient
for a given level of sparsity? This paper is the first attempt to an-
swer this question by analyzing the restricted isometry properties
for commonly met polynomial regression settings. Additionally,
the merits of compressed sampling approaches to polynomial mod-
eling are corroborated on synthetic and real data for quantitative
genotype-phenotype analysis.

1. INTRODUCTION

The Volterra filter is a well-appreciated tool for modeling nonlinear
systems. It basically approximates the system output as a polyno-
mial expansion of the input using Taylor’s theorem. Widespread
applications span the gamut of physiological and biological pro-
cesses, power amplifiers, loudspeakers, speech, and image models,
to name a few; see e.g., [1], [8]. But the notion of polynomially ex-
panding a nonlinearity goes beyond filters. Polynomial regression
aims at approximating a multivariate nonlinear function via a poly-
nomial expansion, and has been extensively used for prediction and
classification tasks [10].

Volterra system identification and polynomial regression are
both studied here. Even though they model nonlinear functions,
their input-output (I/O) relationship is linear with respect to the un-
known parameters. Hence, the model can be estimated via least-
squares (LS) [8]. The major bottleneck is the “curse of dimension-
ality,” since for a P-th order expansion over an L-variate input, the
number of regression coefficients M grows as O(LP). Beyond com-
putational and identifiability challenges involved, high values of M
dictate impractically long data records N [8], [4]. Exploiting ad-
vances in machine learning and viewing nonlinear modeling as a
kernel regression task, tractable solutions can be devised [4], [10].

However, various applications admit a sparse polynomial ex-
pansion, that is, only a few, say s out of M expansion coefficients,
are nonzero. For example, Volterra filters are used to model nonlin-
ear devices such as loudspeakers or high-power amplifiers. These
devices are in cascade with long yet sparse multipath channels,
yielding eventually a sparse Volterra filter. In neuroscience, par-
simonious Volterra filters are used to model the causal relationships
in neuronal ensembles using spike-train data recorded from indi-
vidual neurons [1]. In genome-wide association (GWA) studies,
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sparse polynomial (logistic) regression assists geneticists in iden-
tifying which genes determine certain human genetic diseases and
traits in other species.

LS-based polynomial regression methods fail to handle the di-
mensionality involved, whereas (even kernelized) ridge regression
cannot provide sparse models. Compressed sampling methods in-
cluding the basis pursuit [3] and the (weighted) Lasso [11], [15],
offer valuable tools for estimating parsimonious polynomial expan-
sions. The results obtained so far are successful [13], [14], [7],
but there is no theoretical justification, nor bounds on the (s,N,M)
triplets that can be supported.

Towards this challenging direction, this paper provides such an
analysis through the so called restricted isometry properties (RIP)
of the involved polynomial regression matrix [3]. The Volterra and
the polynomial models are treated separately and different proba-
bilistic bounds are obtained. Our RIP analysis on meaningful ran-
dom input models shows that an s-sparse linear-quadratic Volterra
model can be recovered if the number of measurements N scales at
least as s2 logM, whereas the bound becomes s log4 M for polyno-
mial regression models. Interestingly, the results generalize the RIP
bounds derived for the corresponding linear system identification
[6], and linear regression setups [3]. A comparative study of ridge
and (w)Lasso regression on synthetic and real GWA data demon-
strates the potential of sparsity-aware estimators.
Notation: Lowercase (upper-case) boldface letters are reserved for
column vectors (matrices); 1N denotes the all-ones vector of di-
mension N. The notation ‖x‖p :=

(

∑n
i=1 |xi|p

)1/p for p ≥ 1 stands
for the `p-norm in Rn, whereas ‖x‖0 the `0-(pseudo)norm which
equals the number of nonzero entries of x.

2. VOLTERRA FILTERS AND POLYNOMIAL
REGRESSION

Consider a nonlinear, discrete-time, and time-invariant system de-
scribed by the I/O relationship y(n) = f (x1(n)), where the input
x1(n) := [x(n) . . . x(n−L+1)]T has memory L. Under smooth-
ness conditions [8], this I/O relationship can be approximated by a
Volterra expansion of order P as

y(n) =
P

∑
p=0

Hp [x1(n)]+ v(n) (1)

where v(n) captures unmodeled dynamics and observation noise;
and Hp [x1(n)] is a p-th order polynomial provided as the output of
the Volterra module hp(k1, . . . ,kp)

Hp [x1(n)] :=
L−1

∑
k1=0

. . .
L−1

∑
kp=0

hp(k1, . . . ,kp)
p

∏
i=1

x(n− ki). (2)

The usefulness of polynomial expansion goes beyond sys-
tem modeling. Polynomial regression aims at approximating
a nonlinear function y(n) = f (x1(n)), where now x1(n) :=
[x0(n) . . . xL−1(n)]

T . Setting xl(n) = x(n− l) for l = 0, . . . ,L− 1,

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011  -  ISSN 2076-1465 373



one can readily obtain the Volterra filter as a special case of poly-
nomial regression. For the former, being a filter, each input vector
is a shifted version of the previous one. This differentiating prop-
erty will be critical in our subsequent analysis. However, we choose
to use common notation for the two setups; any ambiguity will be
easily resolved by the context.

Given the I/O samples {x1(n),y(n)}N
n=1, the goal is to estimate

hp(k1, . . . ,kp). This problem has been extensively studied [8], but
sparsity present in many polynomial representations has not been
exploited.

3. ESTIMATING SPARSE POLYNOMIAL EXPANSIONS

Define the vectors xp(n) := xp−1(n)⊗ x1(n) for p ≥ 2 where
⊗ is the Kronecker product. The n-th output can then be ex-
pressed as y(n) = xT (n)h, where xT (n) :=

[

1 xT
1 (n) . . . x

T
P(n)

]

,
and h contains all the polynomial expansion coefficients appro-
priately stacked. Upon collecting all the I/O samples in y :=
[y(1) · · · y(N)]T and X := [x(1) . . . x(N)]T , the following stan-
dard linear regression model is obtained (cf. (2))

y =Xh+v. (3)

Estimating h is critically challenged by its dimensionality which
is originally

(

LP+1 −1
)

/(L−1) [8]. By discarding some redun-
dant expansion coefficients, vectors h and x(n) can be equivalently
shortened to dimension [8]

M :=
(

L+P
L

)

(4)

which is still large. For notational simplicity, the symbols h and X
will henceforth denote the shortened versions of the variables in (3),
i.e., X will be N ×M.

Based on the linear wrt to h model (3), one can develop stan-
dard linear regression estimators for h [8]. One can form LS or
ridge regression estimators, which can be expressed as the mini-
mizers of

min
h

‖y−Xh‖2
2 +δ‖h‖2

2 (5)

where δ > 0 (δ = 0) for the ridge (LS) case. Sparing the widely
studied computational, numerical, and identifiability issues raised
mainly by the high value of M [8], [4], one can immediately recog-
nize that the these two estimates ĥLS and ĥRidge will not be sparse.

To account for the prior information on the sparsity of the un-
known h, which is critical in many interesting applications as advo-
cated in Section 1, one can exploit recent advances in compressed
sampling. Ignoring the noise in (3), h can be ideally recovered by
solving

min
h

{‖h‖0 : y =Xh} . (6)

After recognizing the NP-hardness of solving (6), compressed sam-
pling suggests solving instead the linear program [3]

min
h

{‖h‖1 : y =Xh} (7)

which is also known as basis pursuit. When v is considered, sparsity
can be effected by the `1-norm regularized regression [11]

min
h

1
2
‖y−Xh‖2

2 +λN

M

∑
i=1

wi|hi| (8)

where hi is the i-th entry of h, and wi > 0 for i = 1, . . . ,M. Two
choices for the weights wi commonly adopted are: (w1) wi = 1 for
all i, which corresponds to the conventional Lasso estimator [11];
or, (w2) wi = |ĥRidge

i |−1 that leads to the weighted Lasso (wLasso)
estimator [15]. Among other choices, both problems can be effi-
ciently solved by the coordinate descent method of [5] or the adap-
tive RLS-type algorithm proposed in [7].

The main objective here is to investigate these recoverability
guarantees in the challenging Volterra system identification and
polynomial regression setup as pursued next.

4. RESTRICTED ISOMETRY PROPERTIES

One of the main tools for specifying whether the optimization prob-
lems (7) and (8) can in general recover a sparse vector is the so
called restricted isometry properties (RIP) of the involved regres-
sion matrix X, defined as [3]:

Definition 1 (RIP). Matrix X ∈ RN×M possesses the RIP of order
s, namely δX(s), if δX(s) is the minimum δ ∈ (0,1) satisfying

(1−δ )‖h‖2
2 ≤ ‖Xh‖2

2 ≤ (1+δ )‖h‖2
2 (9)

for all s-sparse h ∈ RM .

RIP were initially derived to characterize the recoverability of
an s-sparse ho given noiseless linear measurements y=Xho. It has
been shown that the minimization in (6) can uniquely recover ho if
and only if δX(2s)< 1. If additionally δX(2s)<

√
2−1, then ho is

the unique minimizer of basis pursuit in (7) [9]. For noise-corrupted
measurements, RIP-based recoverability guarantees can be derived
for the Lasso estimator as well [2].

But finding the RIP of X is a hard combinatorial problem.
Thus, to derive sparse recoverability guarantees one usually resorts
to random matrix ensembles and provides probabilistic bounds on
their RIP [3], [9]. In the generic linear regression setup, it has been
shown that when the entries of X are independently Gaussian or
Bernoulli, the matrix possesses sufficiently small RIP with high
probability when N scales at least as s log(M/s) [3]. In a sparse sys-
tem identification setup where the regression matrix has a Toeplitz
structure, the condition on the number of measurements obtained so
far loosens as s2 logM for a Gaussian, Bernoulli, or uniform input
[6]. The quadratic scaling of N wrt s in the latter bound versus the
linear scaling in the former can be attributed to the statistical depen-
dencies among the entries of X [9]. We next characterize the RIP
of X for both the Volterra system identification and the polynomial
regression setups.

5. RIP FOR VOLTERRA SYSTEM IDENTIFICATION

In our RIP analysis for Volterra filtering, two assumptions will be
considered:
(as1) {xn} is independent uniformly distributed in [−1,1]; and
(as2) P = 2 (linear-quadratic Volterra model).
Regarding assumption (as1), we are usually interested in a bounded-
input behavior of a nonlinear system. For (as2), a second-order
model is a commonly used Volterra model mainly due to computa-
tional reasons. Note that E[x2

n] = 1/3, E[x4
n] = 1/5, and M =

(L+2
2
)

.
To proceed with the RIP analysis, let us first define the Gram-

mian matrix R := XTX and let Ri, j denote its (i, j)-th entry. As
proved in [6], the matrix X possesses the RIP δX(s) ≤ δ if there
exist positive δd and δo with δd + δo = δ such that |Rii − 1| < δd
and |Ri j| < δo/s for every i, j with j 6= i. When these conditions
hold, then the Geršgorin disc theorem guarantees that the eigen-
values of the Grammian matrices formed by any combination of s
columns of X lie in the interval [1− δ ,1+ δ ] and then δX(s) < δ
follows by definition. In a nutshell, for a regression matrix X to
have small δX(s) and, hence, favorable compressed sampling prop-
erties, it suffices that its Grammian R has diagonal entries close to
unity and off-diagonal entries close to zero.

In Volterra filtering, the diagonal entries {Rii} are not equal to
one; but an appropriate normalization of the columns of X can pro-
vide at least E[Rii] = 1. The law of large numbers dictates that given
sufficiently enough measurements N, the Rii’s will approach their
mean value. Likewise, it is desirable for the off-diagonal entries of
R to be zero mean, so that for large N they vanish. Such a require-
ment is not inherently satisfied by all Ri j’s; e.g., the inner prod-

uct between the X columns of the form
[

x2
n x2

n+1 . . . x2
n+N−1

]T and
[

x2
n−k x2

n−k+1 . . . x2
n−k+N−1

]T for some n and k > 0 has expected

value N
(

E[x2
n]
)2 that is strictly positive.
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To achieve the desired properties (p1) E[Rii] = 1, and (p2)
E[Ri j] = 0 for all i, j with j 6= i, instead of studying the RIP of
X, we focus on the modified Volterra regression matrix

X̃ :=
[

x̃c X̃l X̃q X̃b
]

(10)

where x̃c :=
√

1
N 1N corresponds to the intercept, X̃l and X̃q

are two N × L Toeplitz matrices corresponding to the linear and
quadratic parts defined as

X̃l :=

√

3
N









x0 x−1 . . . x−L+1
x1 x0 . . . x−L+2
...

...
...

xN−1 xN−2 . . . xN−L+1









X̃q:=
3
2

√

5
N











x2
0 − 1

3 x2
−1 − 1

3 . . . x2
−L+1 − 1

3
x2

1 − 1
3 x2

0 − 1
3 . . . x2

−L+2 − 1
3

...
...

...
x2

N−1 − 1
3 x2

N−2 − 1
3 . . . x2

N−L+1 − 1
3











and X̃b is a N× L(L−1)
2 (non-Toeplitz) matrix related to the bilinear

part given by

X̃b:=
3√
N









x0x−1 x0x−2 . . . x−L+2x−L+1
x1x0 x1x−1 . . . x−L+3x−L+2

...
...

...
xN−1xN−2 xN−1xN−3 . . . xN−L+2xN−L+1









.

Consider now the Grammian matrix of X̃ defined as R̃ := X̃T X̃.
Comparing X with X̃, the columns of X̃ have their `2-norm nor-
malized in expectation and, thus, R̃ satisfies (p1). Moreover, those
columns of X̃ corresponding to the quadratic part (cf. submatrix
X̃q) have been shifted by the variance of the input. One can readily
verify that (p2) is then satisfied too.

The transition from X to X̃ serves analytical only purposes, but
raises a legitimate question: Do the RIP of X̃ provide any insight on
the compressed sampling guarantees for the original Volterra prob-
lem? In the noiseless scenario, we have actually substituted the
optimization problem in (7) by

min
h̃

{

‖h̃‖1 : y = X̃h̃
}

. (11)

Upon matching the feasible sets of the two problems, i.e., Xh =
X̃h̃, we get the one-to-one mapping

h0 =
1√
N

h̃0 −
1
2

√

5
N

L

∑
k=1

h̃2(k,k) (12a)

h1(k) =

√

3
N

h̃1(k), ∀k (12b)

h2(k,k) =
3
2

√

5
N

h̃2(k,k), ∀k (12c)

h2(k1,k2) =
3√
N

h̃2(k1,k2), ∀k1 6= k2. (12d)

It is now apparent that a sparse solution for (11) translates to a
sparse solution for (7) with the minor exception of the constant term
in (12a). By deterministically adjusting the weights {wi}M

i=1 and the
parameter λN in (8), this argument carries over to the Lasso and an-
swers affirmatively the previously posed question.

To probabilistically characterize the RIP of X̃, we use graph
theoretic arguments to model the dependencies across the entries of
R and extend the concentration results of [6] to the Volterra system
identification case. One of the main results of this work is summa-
rized in the following theorem whose proof is omitted due to space
limitations.

Theorem 1 (Volterra filtering). Let {xi}N
i=−L+1 be a sequence of

independent random variables drawn from U [−1,1]. Assume the
matrix X̃ defined in (10) is generated by this sequence for L≥ 7 and
N ≥ 160. Then, for any δ ∈ (0,1) and for any γ ∈ (0,1), whenever
N ≥ 5C

(1−γ)δ 2 · s2 logL, the matrix X̃ possesses δX̃(s) < δ for s ≥ 2

with probability exceeding 1− exp
(

− γδ 2

C · N
s2

)

, where C = 2,835.

The theorem asserts that at least s2 logL observations are
sufficient to recover an s-sparse non-homogeneous second-order
Volterra filter of memory L probed by a uniformly distributed input.
Since the number of Volterra coefficients M is O(L2), the number
of observations scales also as s2 logM. The bound agrees with the
bounds obtained for the linear filtering setup [6], but here the con-
stants are larger due to the significantly more involved dependencies
among the entries of the associated regression matrix.

6. RIP FOR POLYNOMIAL REGRESSION

Consider first the linear-quadratic model

f (x) = h0 +
L

∑
k=1

h1(k)xk +
L

∑
k1=1

L

∑
k2=k1

h2(k1,k2)xk1 xk2 . (13)

Given N output samples {yn}N
n=1 corresponding to input data

{x1(n))}N
n=1 drawn independently from U [−1,1]L, the goal is

to recover the M × 1 sparse vector h comprising the h1(k)’s and
h2(k1,k2)’s. Note that M = (L+1)(L+2)/2 here. Contrary to the
Volterra filtering setup, the rows of X are now statistically inde-
pendent; a fact that differentiates the RIP analysis for polynomial
regression and leads to tighter bounds.

The analysis builds on [9], which deals with finding a sparse
expansion of a function f (x) = ∑T

t=1 ctψt(x) over a bounded or-
thonormal set {ψt(x)}. Considering D a measurable space, e.g., a
measurable subset of RL, endowed with a probability measure ν ,
the set of functions {ψt(x) : D → R}T

t=1 is a bounded orthonormal
set if for every t1, t2 = 1, . . . ,T

∫

D
ψt1(x)ψt2(x)dν(x) = δt1,t2 (14)

where δt1,t2 is the Kronecker delta function, and for some constant
K ≥ 1 it holds that

sup
t

sup
x∈D

|ψt(x)| ≤ K. (15)

After sampling f (x) at {x(n) ∈ D}N
n=1, the involved N ×T regres-

sion matrix Ψ with entries Ψn,t := ψt (x(n)) admits the following
RIP characterization [9, Th. 4.4]:

Theorem 2. Let Ψ be the N ×T matrix associated with a bounded
orthonormal system with constant K ≥ 1 in (15). Then, for any
δ ∈ (0,0.5], there exist universal positive constants C and γ ,
such that whenever N ≥ CK2

δ 2 · s log4 T , the matrix 1√
N
Ψ possesses

δΨ/
√

N(s)< δ with probability exceeding 1− exp
(

− γδ 2

CK2 · N
s

)

.

In the regression model of (13), even though the basis functions
{1,{xi},{xi1 xi2}} are bounded in [−1,1]L, they are not orthonormal
in the uniform probability measure. Fortunately, our input transfor-
mation trick devised for the Volterra model applies here too. The
expansion is now over the M =

(L+2
2
)

basis functions {ψm(x)}M
m=1

{

1,{
√

3xi},
{

3
√

5
2

(

x2
i −

1
3

)

}

,{3xi1 xi2}
}

(16)
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where the last subset contains all the unique, two-variable mono-
mials lexicographically ordered. Upon stacking the function values
{yn}N

n=1 in y and properly defining h̃, the expansion y =Xh can
be replaced by y = X̃h̃, where the entries of X̃ are

X̃n,m :=
ψm (x(n))√

N
. (17)

Vectors h and h̃ are related through the one-to-one mapping of (12).
Obviously, the identifiability of a sparse h can be guaranteed by the
RIP analysis of X̃ presented in the next lemma.

Lemma 1 (Linear-quadratic regression). Let xi(n) for i = 1, . . . ,L
and n = 1, . . . ,N independent random variables uniformly dis-
tributed in [−1,1]. Assume that the N × M matrix X̃ in (17) is
generated by this sequence for L ≥ 4. Then, for any δ ∈ (0,0.5],
there exist universal positive constants C and γ , such that whenever
N ≥ 144C

δ 2 · s log4 L, the matrix X̃ possesses δX̃(s) < δ with proba-

bility exceeding 1− exp
(

− γδ 2

9C · N
s

)

.

Proof. The inputs x(n) are uniformly drawn over D = [−1,1]L, and
it is easy to verify that the basis functions {ψm(x)}M

m=1 in (16) form
a bounded orthonormal system with K = 3. Hence, Theorem 2 can
be straightforwardly applied. Since M ≤ L2 for L ≥ 4, it follows
that log4 M < 16log4 L.

Lemma 1 assures that an s-sparse linear-quadratic L-variate ex-
pansion with independent uniformly distributed inputs can be iden-
tified with high probability from a number of observations at least in
the order of s log4 L or s log4 M. Comparing this to Theorem 1, the
number of required observations here scales linearly with s. More-
over, except for the increase in the power of the logarithmic factor,
the bound is close to the one obtained for random Gaussian and
Bernoulli matrices in the sparse linear regression setup [3], [9]. The
improvement over the Volterra RIP bound is explained by the sim-
pler structural dependence in X.

Another interesting regression paradigm is when f (x) is
amenable to the sparse multilinear expansion

f (x) = h0 +
L

∑
k=1

h1(k)xk +
L

∑
k1=1

L

∑
k2=k1+1

h2(k1,k2)xk1 xk2 + . . .

+
L

∑
k1=1

L

∑
k2=k1+1

. . .
L

∑
kP=kP−1+1

hP(k1,k2, · · ·,kP)xk1 xk2 . . .xkP (18)

where, in contrast to the polynomial model, each variable is raised
only in the first power. This is the regression model typically en-
gaged in GWA studies [13], [14]. Because there are

(L
p
)

monomials

of order p and, vector h here has dimension M = ∑P
p=0

(

L
p

)

≤

(L+1)P.
The goal is again to recover an s-sparse h given the phenotypes

{yn}N
n=1 over the genotype values {x1(n)}N

n=1. Vectors x1(n) are
drawn either from {−1,0,1}L or {−1,1}L depending on the as-
sumed genotype model (additive for the first alphabet; dominant or
recessive for the latter) [13]. Without loss of generality, consider the
ternary alphabet with equal probabilities. Further, suppose for ana-
lytical convenience that the entries of x1(n) are independent. Note
that the input has zero mean and variance 2/3.

The RIP analysis for the model in (18) exploits Theorem 2.
The basis functions involved now, i.e., {1,{xi},{xi1 xi2}, . . .}, are
orthogonal wrt the assumed point mass function. An orthonormal
set {ψm (x)}M

m=1 can be constructed after a simple scaling as
{

1,
{

K
1
P xi1

}

,
{

K
2
P xi1 xi2

}

, . . . ,
{

K
P
P xi1 xi2 · · ·xiP

}}

(19)

Table 1: Experimental results for QTL data

Method PE MSE NNZ δ /λ

Synthetic data
Ridge regression 68.10 82.29 7382 0.61 N
Lasso 12.84 15.85 200 0.19 N
wLasso 13.09 5.11 85 3.77 N

Real barley data
Ridge regression 8.26 - 8129 4.28·104 N
Lasso 5.96 - 48 0.33 N
wLasso 5.69 - 34 6.88 N

where K = (3/2)P/2 is the function set bound. Similar to the linear-
quadratic case in (13), the original multilinear expansion Xh is
transformed to X̃h̃, where X̃ is defined as in (17) with the new ba-
sis of (19), and h̃ is an entry-wise rescaled version of h. Based on
these facts, the RIP analysis of X̃ follows readily from the ensuing
lemma.

Lemma 2 (Multilinear expansion). Let xi(n) for i = 1, . . . ,L and
n = 1, . . . ,N independent random variables equiprobably drawn
from {−1,0,1}. The N ×M modified multilinear regression ma-
trix X̃ defined in (17) and (19) is generated by this sequence.
Then, for any δ ∈ (0,0.5], there exist universal positive constants
C and γ , such that whenever N ≥ C

δ 2

( 3
2
)P

P4s log4(L + 1), the
matrix X̃ possesses δX̃(s) < δ with probability exceeding 1 −
exp

(

− γδ 2

C(3/2)P · N
s

)

.

Lemma 2 guarantees the RIP to hold with high probability for N
in the order of (3/2)P P4s log4 L; since P is typically 2, the number
of phenotype samples needed is s log4 L.

7. SIMULATED TESTS

Our tests investigate the potential of sparse polynomial regression
for quantitative trait analysis. In quantitative genetics, the pheno-
type is a quantitative trait of an organism, e.g., the height of barley
[12]. The phenotype is assumed to follow a regression model over
single-gene (main) and gene-gene (epistatic) effects [14]. Deter-
mining the so called quantitative trait loci (QTL) corresponds to
revealing the (pair of) genes associated with a particular trait. Since
the studied population N is much smaller than the number of regres-
sors M and given that only a few genes determine the trait consid-
ered, the sparse multilinear (for P = 2) model of (18) is considered.

Synthetic data: The first paradigm is a synthetic QTL study
detailed in [14]. A population of N = 600 individuals is simulated
over L = 121 genes. The true population mean and variance are
5.0 and 10.0, respectively. The phenotype is assumed to be linearly
expressed over the intercept, the L main effects, and the

(L
2
)

= 7260
epistatic effects, i.e., a total of M = 7382 regressors. The QTLs
simulated are 9 single markers and 13 marker pairs. Note that the
simulation accommodates markers with main only; epistatic only;
and both main and epistatic effects.

Parameters δ and λ for ridge and (w)Lasso estimators, respec-
tively, were tuned through 10-fold cross validation based on the pre-
diction error (PE) [10]; see Table 1. Having tuned the regularization
parameters, the mean-squared error (MSE) attained by each method
was averaged over 100 Monte Carlo runs. The (w)Lasso estimators
were run using the glmnet software [5]. As can be seen from Table
1, Lasso attains the smaller PE, but, wLasso provides significantly
higher estimation accuracy. The number of non-zero coefficients
indicated in the fourth column shows that ridge regression yields an
over-saturated model.
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(a) Lasso (b) wLasso

Figure 1: Regression vector estimates for the real QTL barley data. The main (epistatic) effects are shown on the diagonal (left diagonal
part), while red (green) bars correspond to positive (negative) entries.

Real barley data: The second QTL experiment entails a real
dataset collected as described in [12], [14]. The height of N=145
doubled-haploid lines of a cross between two barley lines, Harring-
ton and TR306, was averaged under different environments. There
were L = 127 markers, binary coded as +1 (−1) for the TR306
(Harrington) allele, yielding M = 1+ 127+

(127
2
)

= 8129 regres-
sors. There was a 5% of missing values modeled as zeros as a sim-
ple way to minimize their effect [14].

Tuning the parameters was performed via leave-one-out cross
validation [10]; see Table 1. The ridge estimator failed to han-
dle over-fitting and δ is set to a large value yielding regression
coefficients of insignificant amplitude. Using the ridge estimates
to weight the regression coefficients, wLasso yielded a PE slighty
smaller than the one attained by Lasso, but, more importantly, the
number of spurious coefficients was reduced as shown in Fig. 1. In-
terestingly, some of the epistatic effects revealed involved genes not
having a main effect.

8. CONCLUSIONS

Volterra filtering and polynomial regression are critically chal-
lenged by the curse of dimensionality. Exciting and diverse applica-
tions call for parsimonious polynomial expansions of critical inter-
pretative value. Under such scenarios, the number of measurements
needed to recover the sparse underlying model can be significantly
decreased following the principle of compressed sampling. Exist-
ing results, including the ones conducted here on real and synthetic
QTL data, indicate the potential of the venture. To theoretically
quantify these limits, the RIP for Volterra filtering and polynomial
regression were analyzed here. The bounds obtained is the first at-
tempt to characterize the trade-offs between sparsity and number of
measurements needed, and they generalize the bounds proved for
the related linear cases.
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