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ABSTRACT
In this paper, the problem of preamble-based channel estima-
tion in OFDM offset QAM (OFDM/OQAM) systems under
a deterministic channel assumption is studied. Recent results
indicate that full (all tones carrying pilot symbols) preambles
with equal pilot symbols are locally optimal, in the sense that
they yield a local minimum of the mean square error (MSE)
performance metric of the estimated channel frequency re-
sponse (CFR), subject to a total training energy constraint.
We study the problem of finding the globally optimal full
preamble. We show that under a channel constancy assump-
tion, the global optimum coincides with the full preamble of
equal symbols. The same result holds even if the channel
constancy assumption is removed. Numerical simulations
are presented to support the derived results.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is cur-
rently enjoying great popularity both in wireless and wired
communications [2]. Its basic feature is that it allows to
counteract multipath fading and the severe transmission rate
degradation due to this fading. The key mechanism of an
OFDM system’s operation is the use of a cyclic prefix (CP)
as a guard interval. With its aid, OFDM can transform a fre-
quency selective channel into a set of parallel flat channels
with independent noise disturbances. This greatly simplifies
the tasks of channel estimation and data detection at the re-
ceiver. The price paid for these attributes is an increased sen-
sitivity to frequency offset and Doppler spread. This is due to
Heisenberg’s principle: although the subcarrier functions are
perfectly localized in time1, they suffer from spectral leakage
in the frequency domain, since they have infinite bandwidth.
Moreover, the inclusion of the CP entails a loss in spectral
efficiency, which, in practical systems, can become as high
as 25% [2].

An alternative to CP-OFDM is a filter bank-based variant
employing offset quadrature modulation (OQAM), known as
OFDM/OQAM [9]. In this system, good pulse localization
both in time and frequency domains is possible at the expense
of sacrificing the complex field orthogonality. Nevertheless,
the good localization of the pulses increases the robustness
of the system to frequency offsets and Doppler effects [8].
Moreover, the spectral containment is enhanced [1].

As mentioned previously, the price paid for the good lo-
calization of the pulses both in time and frequency domains
is the sacrifice of their complex field orthogonality. The
pulses are now orthogonal only over the real field. This

1Therefore forming an orthogonal basis over the complex field

implies that there is always an intrinsic imaginary inter-
ference among (neighboring) subcarriers [4]. As expected,
the loss of complex field orthogonality of the pulses affects
both the tasks of channel estimation and signal detection.
OFDM/OQAM channel estimation has been recently studied
for both preamble-based [10, 12] and scattered pilots-based
[4, 11] training schemes. Furthermore, in [7], many possi-
ble preambles were analyzed and compared. It was shown
that the optimal sparse (containing as many pilot tones as
the channel impulse response (CIR) taps) preamble for the
OFDM/OQAM system contains equipowered and equidis-
tant pilot tones, while a locally optimal full preamble con-
tains equal pilot tones. The notion of optimality in the afore-
mentioned cases is with respect to minimizing the mean
square error (MSE) subject to a transmit training energy con-
straint.

The focus of this paper is on proving the global opti-
mality of the full preamble with equal pilot tones, when the
training energy constraint is placed at the output of the trans-
mitter2 and the rest of the assumptions in [7] are preserved.
The key contribution of this paper is the proof of the lat-
ter global optimality. The problem of finding the globally
optimal full preamble is initially studied under the channel
constancy (CC) assumption, which is very common in the
OFDM/OQAM literature [5, 10, 11, 12]. According to the
CC assumption, the CFR coefficients do not vary signifi-
cantly over neighboring subcarriers. Under this assumption,
also used in [7], it is shown that the full preamble containing
equal pilot tones is the global optimum. It is also shown that
the same full preamble is globally optimum, even when the
CC assumption is dropped.

The rest of the paper is organized as follows: Section 2
presents the system model and some necessary mathematical
definitions, useful in the following. In Section 3, the proof
of the global optimality of the full preamble with equal sym-
bols under the CC assumption is given. Section 4 proves that
the same full preamble is globally optimum even when the
channel constancy assumption is dropped. Numerical simu-
lations are provided in Section 5, while Section 6 concludes
the paper.
Notation. Vectors and matrices are denoted by bold lower-
case and uppercase letters, respectively. Superscripts T and
H stand for transposition and conjugate transposition. The
complex conjugate of a complex number z is denoted by z∗.
Also, ı =

√
−1. ‖ · ‖ is the Euclidean norm and | · | the abso-

lute value of a real number. For a matrix A, Ai, j denotes its
(i, j) entry. The expectation and matrix trace operators are

2The global optimality of the full preamble with equal pilot tones when
the training energy constraint is placed in front of the Synthesis Filter Bank
(SFB) has been shown in [7].
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denoted by E(·) and tr(·), respectively. Im denotes the mth-
order identity matrix, 0m×n,1m×n the m×n all zeros and all
ones matrices, respectively. Finally, Z denotes the set of in-
teger numbers.

2. SYSTEM MODEL

The baseband discrete-time signal at time instant l, at the
output of an OFDM/OQAM Synthesis Filter Bank (SFB) is
given by [13]:

s(l) =
M−1

∑
m=0

∑
n∈Z

am,ngm,n(l), (1)

where am,n are real (OQAM) symbols, and gm,n is commonly
defined as

gm,n(l) = g
(

l −n
M
2

)

eı 2π
M m

(

l− Lg−1
2

)

eıϕm,n , (2)

with g being the real symmetric prototype filter impulse re-
sponse (assumed here of unit energy) of length Lg, M be-
ing the even number of subcarriers, and ϕm,n = ϕ0 + π

2 (m +

n) mod π , where ϕ0 can be arbitrarily chosen3 [13]. The fil-
ter g is usually designed to have length Lg = KM, where K,
the overlapping factor, takes on integer values 1 ≤ K ≤ 5 in
practice. The double subscript (·)m,n denotes the (m,n)-th
frequency-time (FT) point. Thus, m is the subcarrier index
and n the OFDM/OQAM symbol time index.

The pulse g is designed so that the associated subcarrier
(basis) functions gm,n are orthogonal in the real field, that is

ℜ

{

∑
l

gm,n(l)g∗p,q(l)

}

= δm,pδn,q

where δi, j is the Kronecker delta (i.e., δi, j = 1 if i = j and
0 otherwise). This implies that even in the absence of chan-
nel distortion and noise, and with perfect time and frequency
synchronization, there will be some intercarrier (and/or in-
tersymbol) interference at the output of the Analysis Filter
Bank (AFB), which is purely imaginary, i.e.,

∑
l

gm,n(l)g∗p,q(l) = ıup,q
m,n

and it is known as intrinsic interference [10]. Here up,q
m,n is a

real number.
Adopting the commonly used assumption that the chan-

nel is (approximately) frequency flat at each subcarrier and
constant over the duration of the prototype filter [10], which
is true for practical values of the channel length Lh and Lg and
for well time-localized g’s, one can express the AFB output
at the pth subcarrier and qth OFDM/OQAM symbol as:

yp,q = Hp,qap,q + ı
M−1

∑
m=0

∑
n

︸ ︷︷ ︸

(m,n)6=(p,q)

Hm,nam,nup,q
m,n

︸ ︷︷ ︸

Ip,q

+ηp,q, (3)

3For example, in [13], ϕm,n is defined as (m+n) π
2 −mnπ. An alternative

definition would be ϕm,n = (m+n) π
2 −m(n+1)π.

where Hp,q is the CFR at that FT point and Ip,q the associated
interference component. ηp,q is the additive noise component
at the (p,q)-th FT point, which is considered to be the result
of a zero mean, white, complex gaussian noise process of
variance σ 2 filtered by the AFB at the receiver.

The good localization of the pulses in the time and fre-
quency domains usually leads to concentration of the intrin-
sic interference in a neighborhood Ωp,q around the FT point
(p,q). With this assumption, (3) is written as:

yp,q = Hp,qap,q + ı ∑
m

∑
n

︸ ︷︷ ︸

(m,n)∈Ωp,q

Hm,nam,nup,q
m,n +ηp,q. (4)

In practice, we consider Ωp,q to be the first-order neighbor-
hood of (p,q), denoting it as Ω1

p,q, i.e., Ω1
p,q = {(p± 1,q±

1),(p,q±1),(p±1,q)}.
In the rest of the paper, the set {0,1, . . . ,M − 1} will be

viewed as circular, in the sense that, e.g., when m = 0, then
m−1 = M−1.

3. GLOBALLY OPTIMAL FULL PREAMBLE

As in [7], we will consider a preamble structure consisting of
two vector symbols, namely a nonzero training vector which
is transmitted at n = 0, followed by a zero vector. The time
index n = 0 will be henceforth omitted for simplicity. Then,
any frame or subframe will have the form:







a0 0 d0,2 · · · d0,TF−3
a1 0 d1,2 · · · d1,TF−3
...

...
...

...
...

aM−1 0 dM−1,2 · · · dM−1,TF−3







where dm,n is a data symbol at the (m,n)-th FT point. TF is
the frame length, while [a0,a1, . . . ,aM−1]

T is the initial train-
ing vector. The zero vector in the preamble aims at protecting
the nonzero training vector from intrinsic interference due to
the data section of the frame. We will call the nonzero train-
ing vector, a preamble vector [10]. In wireless communica-
tions standards (e.g., WiMAX [2]), there are sufficiently long
guard periods between the uplink and downlink subframes
and between frames. Thus, there is no need to worry about
intrinsic interference on the preamble vector from previous
frames. The preamble vector is called full, if it contains pi-
lots in all subcarriers. It is called sparse, if it contains Lh
isolated pilots and zeros at the rest of its entries.

For the sake of facilitating the analysis, and with a harm-
less abuse of the OQAM modulation, we will henceforth in-
clude the phase factor eıϕm,n in the preamble symbols, i.e.,
xm = ameıϕm , where ϕm ∈ {0,±π ,± π

2}. This of course also
requires that we accordingly modify the previous definition
of gm,0(l) for this part of the frame/subframe. Then the intrin-
sic interference will be purely real, equal to up,0

m,0. Since g(l)
is a real and (evenly) symmetric prototype function, g2(l) is
also real and (evenly) symmetric. With this in mind, one can
readily see that the interference concerning the entries of the
nonzero preamble vector is such that

∑
l

gm−1(l)g∗m(l) = ∑
l

gm+1(l)g∗m(l) = β ,
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where β is a real number4. For commonly used pulses, it is
|β | ≤ 1/2. We use the same assumption as in [7] that β > 0.
This can always be achieved, for if β < 0, we can incorpo-
rate the sign factor eıϕ ′

m,0 = eımπ to the gm’s above, yielding a
positive β .

For the received sample corresponding to the training
symbol xm, we can then write:

ym = Hmxm +Hm−1xm−1β +Hm+1xm+1β +ηm. (5)

Using the CC assumption, we can consider that Hm ≈
Hm−1 ≈ Hm+1, and the last equation is written as:

ym ≈ Hm (xm + xm−1β + xm+1β )+ηm. (6)

Placing all the received observations in a vector, we can
write:

y = TH+η

where y =[y0,y1, . . . ,yM−1]
T , H=[H0,H1, . . . ,HM−1]

T , η =

[η0,η1, . . . ,ηM−1]
T and T = diag(T0,T1, . . . ,TM−1). Here,

T0 = x0 + x1β ± xM−1β , TM−1 = xM−1 + xM−2β ± x0β ,Tj =
x j +x j−1β +x j+1β , j = 1,2, . . . ,M−2. In the following, for
homogeneity reasons, we will assume that T0 = x0 + x1β +
xM−1β , TM−1 = xM−1 + xM−2β + x0β , or we can consider
that the border subcarriers carry null symbols5.

If there is no statistical assumption about the channel, the
least-squares (LS) criterion is meaningful. Then our channel
estimate will be given by:6

Ĥ = T−1y. (7)

The error covariance matrix for (7) is C
Ĥ

= T−1CηT−H ,
where Cη = E[ηηH ] is given by [7]: Cη = σ 2B. B is the
circulant matrix with first row [1,β ,0, . . . ,0,β ].

Lemma 1 Cη is invertible if and only if cos(2πm/M) 6=
−1/(2β ),m = 0,1, . . . ,M−1.

Proof
To obtain the condition of the lemma, simply observe

that Cη = σ 2B and B is circulant. Thus, Cη is diag-
onalizable by the DFT matrix, with eigenvalues equal to
{σ 2(1+2β cos(2πm/M))}M−1

m=0 . Cη is invertible iff all these
eigenvalues are 6= 0, which yields the desired condition. �

According to [7], the performance of the LS es-
timator given by (7) will be enhanced if Ĥ, pro-
duced by a full preamble, is further processed by K =

FM×Lh

(

FH
M×Lh

FM×Lh

)−1
FH

M×Lh
, where FM×Lh is the left

M×Lh submatrix of the normalized M×M DFT matrix W.
In essence, the LS performance is improved based on our a
priori knowledge about the channel length, Lh. The filter K
projects our LS CFR estimate onto the space of the CFR’s

4There might be a peculiarity with respect to the boundary subcarriers.
The interference introduced by the 0th subcarrier to the (M− 1)th and vice
versa can be ±β depending on the used pulse.

5The placement of nulls in the boundary subcarriers is a common prac-
tice for spectral masking purposes, as well.

6It is straightforward to check that the last estimator delivers an unbiased
estimate with the same error covariance as

(
THC−1

η T
)−1

THC−1
η y.

generated by CIR’s of length Lh. The optimal training design
problem is thus formulated as follows:

min
xm,m=0,1,...,M−1

E
[∥
∥
∥KĤ−H

∥
∥
∥

2
]

(8)

s.t.
M−1

∑
m=0

(
|xm|2 +βxmx∗m−1 +βxmx∗m+1

)
≤ E , (9)

where the constraint (9) is given by eq. (48) in [7]. The con-
straint can be seen to incorporate the energy of the input,
namely ∑M−1

m=0 |xm|2, and two extra terms due to the cross-
correlation of adjacent pulses in Ω1

m,0.
For immediate mathematical tractability of the selection

of the Ti’s and consequently the xi’s, the analysis in [7] is per-
formed for the channel estimator (7), before the application
of the filter K. For the same reasons and to be in accordance
with [7], we will deal with the optimization problem of the
training symbols, before the filtering of Ĥ by K in the rest
of the paper7.

The optimal training design problem, subject to a total
training energy constraint at the output of the SFB, is formu-
lated as follows:

min
xm,m=0,1,...,M−1

tr
{
T−1CηT−H}

(10)

s.t.
M−1

∑
m=0

(
|xm|2 +βxmx∗m−1 +βxmx∗m+1

)
≤ E . (11)

We now prove that the full preamble with equal symbols is
also a globally optimal solution with this energy constraint.

Theorem 1 Assuming that Cη is nonsingular, the global
minimizer for the optimization problem (10)-(11) is the full
preamble with equal symbols.

Proof
The objective function (10) can be written as:

tr
{
T−1CηT−H}

=
M−1

∑
i=0

σ2

|Ti|2
. (12)

In essence, due to the fact that T is diagonal, the problem is
equivalent to considering Cη = σ 2IM instead of its circulant
form.

Due to the stability of the SFB, i.e., the stability of all the
subchannel filters, the constraint (11) implies that there is an
upper bound to the energy at the input of the SFB, namely,
∑M−1

m=0 |xm|2 ≤ E.8 Using this natural bound, in Proposition
4 of [7], it is shown that ∑M−1

i=0 |Ti|2 ≤ E(1 + 2β )2 for any
choice of {Ti}M−1

i=0 . To derive this bound, (11) has been
used. This bound is actually tight, in the sense that there are
choices {xm}M−1

m=0 achieving it, e.g., x0 = x1 = · · · = xM−1 =

x =
√

E
M eıθ , θ ∈ {0,±π ,±π/2}. This constraint can replace

constraint (11), when seeking for the optimal training vector,
as long as a possible minimizer for this new problem yields
our original constraint (11) tight.The latter is trivial in our
case, as the following analysis demonstrates.

7Although the performances presented in the simulations section take K
into account (see also [7] for clarifications).

8Following [7], it can be readily seen that E = E /(1+2β ).
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Using the Arithmetic-Harmonic mean (AH) inequality,
we can write:

M−1

∑
i=0

σ2

|Ti|2
≥ σ2M2

∑M−1
i=0 |Ti|2

≥ σ2M2

E(1+2β )2

with equality iff |Ti|2 = E(1+2β )2/M for all i. An obvious
choice for this condition to be achieved is that x0 = x1 = · · ·=
xM−1 = x =

√
E
M eıθ . It is trivial to see that the constraints

∑M−1
m=0 |xm|2 ≤ E, ∑M−1

i=0 |Ti|2 ≤ E(1+2β )2 and (11) are tight

at the optimal solution x0 = x1 = · · · = xM−1 = x =
√

E
M eıθ .

This completes our proof. �

4. DROPPING THE CHANNEL CONSTANCY
ASSUMPTION

It is intuitive to expect that due to “symmetry” of the sys-
tem in the channel and noise directions, the equal pilot sym-
bols will constitute a good preamble. By “symmetry” of the
system, we mean that the additive noises in all subcarriers
have the same variance, while the crosscorrelations of adja-
cent pulses are the same. Also, the symmetry of the system
is associated with an assumption of lack of side channel state
information. Side channel state information could be, for
example, the covariances of the individual CFR coefficients
that would impose a greater power loading on certain sub-
carriers as opposed to others, so that the total variance of the
CFR estimators is minimized. It is intuitive to expect that
the described symmetry would not allow some of the CFR
coefficients to be favorably treated as opposed to others.

We now prove that the full preamble with equal symbols
is still the optimal preamble in the case that the CC condition
is dropped. In that case,9 the matrix T becomes BD, where
D = diag(x0,x1, . . . ,xM−1).

Theorem 2 Assuming that Cη is invertible, the full pream-
ble with equal symbols is the global minimizer of (10)-(11)
for T = BD.

Proof
Consider the full preamble with equal pilot symbols.

Then T = xB, where x = x0 = x1 = · · ·= xM−1. It is straight-
forward to check that such a symbol selection is efficient in
the sense that it can satisfy the constraint (11) or the con-
straint ∑M−1

i=0 |Ti|2 ≤ E(1 + 2β )2 with equality for appropri-
ate x. With this T, C

Ĥ
= (σ 2/|x|2)B−1, with eigenvalues

{
λm = (σ 2/|x|2)/

(
1+2β cos

( 2π
M m

))}M−1
m=0 by Lemma 1. If

we denote w = e−ı 2π
M , then (1/

√
M)wi j , i, j = 0,1, . . . ,M−1

is the (i, j)-th element of the DFT matrix W. Then, the j-th
diagonal entry of C

Ĥ
is written as:

(C
Ĥ

) j j =
1
M

M−1

∑
m=0

λm|wm j|2 =
1
M

M−1

∑
m=0

σ2/|x|2
1+2β cos

( 2π
M m

)

for all j. This shows that the corresponding LS CFR esti-
mator delivers CFR estimates with the same error variance
(aforementioned symmetry of the system).

9Generally speaking, the CC assumption becomes inaccurate for time
domain channel lengths approximately equal to or greater than M/4.

Moreover, it is very easy to see that the corresponding ob-
jective function tr{C

Ĥ
} is written as: ∑M−1

m=0 α/|xm|2, where
α = (1/M)∑M−1

m=0 [σ2/(1 + 2β cos(2πm/M))]. The global
optimality of the full preamble with equal symbols is en-
sured by using the same argument as in the proof of Theo-
rem 1, with the constraint ∑M−1

i=0 |Ti|2 ≤ E(1+2β )2 replaced
in this case by ∑M−1

i=0 |xi|2 ≤ E due to SFB stability. Again
the optimal equal pilot solution is tight for both the last two
constraints and (11). �

Remark: Using the fact that 1 + 2β cos(2πm/M) ≤ 1 + 2β ,
it can be easily checked that with the same available train-
ing energy, the optimal LS estimator assuming channel con-
stancy is better than the last one, even when the CC assump-
tion becomes almost invalid. This is a direct consequence of
comparing the optimal values of (10) for the optimal T’s in
the CC and the non CC cases. Intuitively, considering the
CC assumption, the optimal full-preamble LS estimator uses
pilots x(1 + 2β ). Thus, it essentially trades accuracy in the
frequency direction for greater noise reduction. Within our
framework, this tradeoff turns out to be in favor of the LS es-
timator using the CC assumption, even when this assumption
is approximately invalid.

5. NUMERICAL EXAMPLES

In this section, we present simulation results to verify our
analysis. The channel follows the veh-A model [2]. The
CIR is initially generated with 29 taps and then zero padded
to the closest power of two, that is, Lh = 32 taps. For the
OFDM/OQAM system, we have used filter banks as given
in [3]. We plot the normalized MSE (NMSE), i.e., E(‖H−
Ĥ‖2/‖H‖2), versus the transmit SNR.

The optimal full (OQAM-Full-Equal-CC) and
sparse preambles (OQAM-Sparse-Preamble) for the
OFDM/OQAM system under the CC assumption are com-
pared in Fig. 1 for different M,K. According to [6, 7],
the optimal sparse preamble consists of Lh equispaced and
equipowered pilot symbols. Note that the optimal sparse
preamble is not affected by the validity or not of the CC
assumption, due to its sparsity. The OQAM-Full-Rand-CC
scheme uses the CC assumption to estimate the CFR coef-
ficients, while it employs randomly selected but otherwise
co-phased training symbols. The OQAM-Full-Equal-NCC
and OQAM-Full-Rand-NCC schemes (“NCC” stands for
“Not CC”) do not use the CC assumption, while they
employ the same symbols as OQAM-Full-Equal-CC and
OQAM-Full-Rand-CC, respectively. All schemes have the
same energy at the output of the SFB.

The global optimality of the OQAM-Full-Equal-CC
preamble is demonstrated in both cases, while its relative
performance with respect to the validity or not of the CC as-
sumption against the optimal sparse preamble is also shown.
In Fig. 1(a), the CC assumption holds due to the large ratio
M/Lh. In this case, the curves of the optimal sparse, full-
equal-cc and full-equal-ncc preambles coincide, while these
preambles outperform the preambles with different power
loadings. In Fig. 1(b), however, the CC assumption is al-
most invalidated because of the small ratio M/Lh, i.e., the
neighboring channel coefficients may differ significantly. All
the CC and the optimal sparse schemes outperform the NCC
schemes, verifying the remark at the end of the last sec-
tion. Observe the error floor exhibited at high SNR values
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Figure 1: NMSE performance with K = 4 and (a) M = 512,
(b) M = 64.

in Fig. 1(b). This is due to the fact that the CC assumption
is not valid in this case, and hence residual interference re-
sults, which prevails over background noise in the high SNR
regime. Notice that this effect is less significant in the sparse
preamble, due to its relative robustness to interference.

6. CONCLUSION

The problem of optimal preamble design for LS channel esti-
mation in OFDM/OQAM systems was addressed in this pa-
per, in the case of full preambles. The full preamble with
equal symbols was proved to be a globally optimal pream-
ble under the CC assumption or even in the case that the CC
assumption is removed, when the assumed analysis frame-
work is the same as in [7]. Furthermore, it is generally better
to assume CC, even when this assumption is approximately
invalid. Our analytical results were supported by numerical
simulations.
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