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Abstract—In this paper, a performance driven resource allocation
scheme for target localization in multiple radar systems is proposed and

evaluated. An optimal subset of active antennas of predetermined size,

K, is selected such that the localization mean-square error (MSE) is

minimized. The problem is formulated in a combinatorial optimization
framework as a knapsack problem (KP). The Cramer-Rao bound (CRB)

is used as a performance metric. Cost parameters, representing opera-

tional cost or any other utilization constraints, are associated with each of
the antennas. These are incorporated into the KP formulation, integrating

decision making factors in the selection process. Antenna subset selection

is implemented through an approximation algorithm, by successively

selecting antennas so as to maximize the temporal Fisher information
matrix (FIM) for a given subset size. The proposed approximation algo-

rithm offers considerable reduction in computational complexity when

compared with exhaustive search, supporting distributive processing and
low performance loss.

Index Terms—MIMO radar, Multistatic radar, Cramer-Rao bound,

resource allocation, target localization.
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I. INTRODUCTION

A. Background and Motivation

There are a growing number of systems that employ mobile

stations or systems operating over prolonged time periods, in which

the cost of operation becomes significant. One example of such

a system is ground surveillance radars (GSRs). These are usually

portable light-weight systems that may be carried by one person

or mounted on a vehicle. GSR systems are used in a variety of

applications, including urban warfare, counter terrorism, border patrol

and security, airport security etc. The notion of resource-aware design

is of critical importance when it comes to this type of system. Power

management is one way to address resource-aware operation. In [1],

we have proposed methods for allocating power among the transmit

antennas such that localization performance is optimized while the

total transmitted power is minimized.

Another aspect of resource-aware operation is the use of the

available infrastructure. In a previous study [2] we have considered

the problem of identifying the smallest subset of transmit and receive

antennas, out of the available M transmit and N receive ones,

that achieves a given target localization estimation mean-square

error (MSE) threshold. In particular, we have shown that a given

localization accuracy threshold may be met by using a proper subset

of the available transmit and receive antennas. In addition to its

operational savings, selecting a subset of active radars offers reduced

communication needs and computational complexity. In this paper

we address the case in which the active set must have a specific

size. Thus, the goal is to select a subset of predetermined size K
such that the estimation capability of the subset is maximized. The

choice of the appropriate subset of antennas depends on the system

parameters, such as the topology of the system with respect to the

1The research was supported by the Office of Naval Research under Grant
N00014-09-1-0342.

target, the signal-to-noise ratio (SNR) over the different propagation

paths, the effective bandwidth, and the transmitted power.

The problem of selecting K sensors out of a given set of M
possible sensors has been addressed in the literature for passive

wireless sensor networks (WSNs) [3]- [5]. In [3], the problem is

addressed through convex optimization tools, in which the discrete

problem is relaxed to a continuous one. The estimation performance

is evaluated using a scalar measure of the volume (mean radius) of

the confidence ellipsoid. A different approach is proposed in [4], in

which a set of sensors is selected such that the joint observations of

the selected sensors with the prior target location distribution yields

the greatest reduction in the entropy of the target location distribution.

A geometry-based approach is proposed in [5] for the selection of

sensor subsets in WSNs for estimating a target’s bearing. Radar

systems perform active sensing as they generate energy emissions

through their transmit antennas for the purpose of observation. The

reflections of this energy by targets of interest are then sensed at

the receive antennas. In these systems two groups of sensors need

to be selected: energy emitting sensors and data observing (sensing)

sensors. The problem of selecting an optimal subset of K sensors

translates to choosing K0 transmit antennas out of the given M
and K − Ko receive antennas out of N . An active localization
system is constrained to have at least one transmit antenna and one

receive antenna. Overall, at least four antennas are required for target

localization [1].

This subset selection problem may be formulated, in a combina-

torial optimization framework, as a knapsack problem (KP) [6]. The

KP determines the items to be included in the collection (knapsack),

such that the total capacity is kept within a given limit (K) while
minimizing the total value (MSE). The Cramer-Rao bound (CRB) [7]

is used to evaluate the temporal performance level for a given set. This

formulation facilitates a natural integration of decision factors into

the optimization and the use of existing combinatorial optimization

methods with its performance evaluation tools. An optimal brute-

force search for this problem is simple to implement; however, its

computational complexity is exponential in the number of elements

and thus tends to grow very quickly as the size of the problem

increases [6]. Fast approximation algorithms have been proposed for

linear and quadratic KPs [8]- [10]. Common heuristic methods are

greedy and branch-and-bound algorithms. Metaheuristics that use

combinations of these heuristic tools have been proposed, among

them is multi-start local search (MLS) [11], [12], and [13]. These

methods offer polynomial complexity and their performance is eval-

uated through normalized approximation error analysis [11].

The combinatorial optimization problem of selecting a subset of

K transmit and receive antennas such that the localization MSE is

minimized is formulated in this paper as a KP. An approximation

algorithm is proposed for the identification of such a subset. Cost

parameters, associated with each of the antennas, are used to integrate

decision factors in the selection process. The paper is organized as
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follows: The system model and the CRB metric are introduced in

Section II. An approximation algorithm is proposed in Section III.

Numerical analysis of the proposed algorithm is provided in Section

IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a distributed multiple radar system with M transmit

and N receive antennas, forming anM×N distributed multiple radar

system. An extended target, with a center of mass located at position

(x, y), is assumed. The system is tracking the target’s location and

has available estimates for unknown parameters, such as the target

radar cross section (RCS) and propagation attenuation, from previ-

ous cycles. The search cell is confined to (xc ± kc/β, yc ± kc/β),
where k is an integer, c is the speed of light, and β is the

waveform effective bandwidth. The transmit and receive radars are

located in a two dimensional plane. The M transmit antennas are

arbitrarily located at coordinates (xmTx , ymTx), m = 1, . . . ,M ,
and the N receiver antennas are arbitrarily located at coordinates

(xnRx , ynRx), n = 1, . . . , N . The transmit antenna set is defined
as STx := {(x1Tx , y1Tx) , (x2Tx , y2Tx) , ..., (xMTx

, yMTx
)} and

the receive radar set as SRx := {(x1Rx , y1Rx) , (x2Rx , y2Rx) ,
..., (xNRx

, yNRx)}. A set of orthonormal waveforms is transmitted,
each with a lowpass equivalent sm (t). The waveforms’ transmitted
powers pmtx are constrained by ptx = [p1tx , p2tx , ..., pMtx ]

T
.

The baseband representation for the signal transmitted from radar

m received at radar n is

rm,n (t)=
√
αm,npmtxhm,nsm (t− τm,n)+wm,n(t), (1)

where τm,n denotes the propagation time of a signal transmitted

by radar m, reflected by the target, and received by radar n. The
term αm,n represents the variation in the signal strength due to

path loss effects. The term hm,n incorporates the effect of phase

offsets between the transmit and receive antennas and the target radar

RCS impact on the phase and amplitude. This quantity is modeled

as being deterministic and complex. The term wm,n(t) represents
circularly symmetric, zero-mean, complex Gaussian noise, spatially

and temporally white with autocorrelation function σ2wδ (τ ). The
propagation path from transmitter m to the target and from the target

to receiver n is defined as channel (m,n).

We define a vector of unknown parameters as u =
[
x, y,hT

]T
,

where h = [h1,1, h1,2, ..., hM,N ]
T
.

For an unbiased (or asymptotically unbiased) estimator, the max-

imum likelihood estimator (MLE) MSE asymptotically approaches

the CRB as the SNR becomes large [7]. In [14] it was demonstrated

that the MLE is asymptotically tight to the CRB at high SNR (over

10dB). Thus, the CRB is used here to represent the localization MSE

as a function of the power allocation. Herein, the CRB expression,

Cx,y (u), derived in [1], is used, resulting in the following expres-
sion:

Cx,y (u)=

{
M∑

m=1

N∑

n=1

Jm,n

}−1
, (2)

where the submatrix Jm,n is the Fisher information matrix (FIM)

defined as

Jm,n=

[
uam,n ucm.n

ucm,n ubm,n

]
, (3)

and the elements uam,n , ubm,n , and ucm,n , are defined in [2].

Introducing a set of binary variables

qtxm =

{
1 if transmit radar m is selected;

0 otherwise
, m = 1, ...,M,

(4)

and

qrxn =

{
1 if receive radar n is selected;
0 otherwise

, n = 1, ..., N,

(5)

the CRB for a set of radars, SA = {xmTx
∈ Stx,

xnRx ∈ STx | qtxm = 1, qrxn = 1}, may be expressed as

CSA (qtx,qrx, ũ)=

{
M∑

m=1

N∑

n=1

qtxmqrxnJm,n

}−1
, (6)

where qtx = [qtx1 , qtx2 , ..., qtxM ]
T

M×1
, qrx = [qrx1 , qrx2 ,

..., qrxN ]
T

N×1
. We denote by ũ =

[
x̃, ỹ, h̃T

]T
a vector of prior

estimates of the target location and RCS, obtained in previous cycles.

Based on the FIM defined in (3), the trace of the CRB expres-

sion in (6), and therefore, the metric representing σ2x (qtx,qrx) +
σ2y (qtx,qrx), may be formulated as

tr (CSA (qtx,qrx, ũ))=
M∑

m=1

N∑

n=1

U1m,nqtxmqrxn (7)

×




M∑

m,m′=1

N∑

n,n′=1

U2m,n,m′,n′
qtxmqrxnqtxm′

qrxn′




−1

,

where U1m,n = uam,n +ubm,n and U2m,n,m′,n′
= uam,nubm′,n′

−
ucm,nucm′,n′

. Locations in vector qtx and vector qrx, corresponding

to elements xmTx ∈ SA and xnRx ∈ SA, respectively, are set to one;
otherwise they are set to zero. The expression for the CRB, as given

in (7), offers a metric that may be used to represent the MLE MSE

in the KP formulation provided next.

III. SUBSET SELECTION

In the context of resource-aware operation of multiple active sensor

systems, such as multiple radar systems, we developed tools for

resource-aware operation in [1] and [2]. Herein, we address a scenario

in which a required utilization factor is imposed on the system in-

frastructure operation. For example, under some emergency operation

conditions, a multiple sensor system may be restricted to operate only

a fraction of the system at any given time, denoted by ρmax. This
means that if the system is equipped with M + N sensors it will

aim at working with a subset of K = ⌊ρmax(M +N)⌋ sensors that
present the best estimation performance attainable by a subset of this

size. The number of possible combinations for choosing K antennas

out of a set of M +N is given by
K−1∑

ko=1;ko≤M ;K−ko≤N

(
M

ko

)(
N

K−ko

)
.

The objective is to choose a combination that offers the lowest MSE,

i.e., minimal σ2x + σ
2
y ≥ tr (CSA (qtx,qrx)).

1) Problem formulation: The problem of selecting K sensors,

where Ko are transmit antennas and K −Ko are receive antennas,

that provide the best estimation performance in terms of localization

MSE, may be formulated as

minimize
qtx,qrx

tr (CSA (qtx,qrx, ũ)) ,

s.t.
M∑

m=1

qtxm +
N∑

n=1

qrxn = K,

M∑

m=1

vtxmqtxm +
N∑

n=1

vtxmqrxn ≤ Kv

M∑

m=1

qtxm ≥ 1,
N∑

n=1

qrxn ≥ 1,
qtxm ∈ {0, 1} , qrxn ∈ {0, 1} ,

(8)
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where Kv represents the total allowable cost. The matrix

CSA (qtx,qrx) is given in (7). The search cell center coordi-

nates, (xc, yc), may also be used instead of an estimated target
location(x̃, ỹ). The trace of the CRB represent the sum of the

variances of the estimation error on the target’s x and y location,
σ2x (qtx,qrx) + σ

2
y (qtx,qrx).

We replace the optimization problem with an approximate

KP representation by replacing min {tr (CSA (qtx,qrx, ũ))}
in (8) with max

{
tr
(
C−1
SA
(qtx,qrx, ũ)

)}
. Using the

relation in (6), we replace max
{
tr
(
C−1
SA
(qtx,qrx, ũ)

)}
by

max

{
M∑

m=1

N∑

n=1

qtxmqrxn tr (Jm,n)

}
. Using the definition of U1m,n

following (7), the resulting approximate KP optimization is then

maximize
qtx,qrx

M∑

m=1

N∑

n=1

U1m,nqtxmqrxn ,

s.t.
M∑

m=1

qtxm +
N∑

n=1

qrxn = K,

M∑

m=1

vtxmqtxm +
N∑

n=1

vtxmqrxn ≤ Kv

M∑

m=1

qtxm ≥ 1,
N∑

n=1

qrxn ≥ 1,
qtxm ∈ {0, 1} , qrxn ∈ {0, 1} .

(9)

This is a quadratic knapsack problem (QKP). For later use, we define

a cost objective function, QK (qtx,qrx), as

QK−set (qtx,qrx) =
M∑

m=1

N∑

n=1

qtxmqrxnU1m,n (10)

×




M∑

m,m′=1

N∑

n,n′=1

U2m,n,m′,n′
qtxmqrxnqtxm′

qrxn′




−1

,

and a total utilization weight function

WK−set (qtx,qrx) =

M∑

m=1

vtxmqtxm +

N∑

n=1

vtxmqrxn , (11)

where Kv represents the total allowable cost.

An optimal solution to the KP in (9) may be obtained through

an exhaustive search of all possible combinations of transmit and

receive antenna sets of size K, which has exponential complexity as

it requires
K−1∑

ko=1;ko≤M;K−ko≤N

(
M

ko

)(
N

K−ko

)
iterations. Hereafter, we

propose an approximate algorithm with lower computational cost.

2) KNAPsetK Algorithm: The KP in (9) defines a search for a

combination of K transmit and receive antennas that maximizes the

FIM. The proposed approximate search algorithm in detailed in Table

1. An initial subset of the antennas is generated by selecting one
transmitter and one receiver

{
x◦iTx ,x

◦
jRx

}
. As in the aKNAPminset

algorithm, all possible pairs of transmit and receive antennas are

exhausted for the given available set of antennas. The algorithm

repeats the search for all possible MN initial pairs
{
x◦iTx ,x

◦
jRx

}
.

The locations in vector qtx and vector qrx, corresponding to the

resulting x◦iTx and x
◦
jRx

, are set to one and the antennas are added

to the active antenna set Smin = {xiTx ,xjRx}. At the same time,
these antennas are discarded from the remaining, inactive, transmit

and receive antenna sets, S′Tx = STx\xiTx and S
′

Rx = SRx\xjRx ,
respectively. At each iteration step either one transmit antenna or one

receive antenna is added to the active subset, such that the trace of the

temporal FIM matrix is maximized, max
xiTx

∈S
′

Tx

∥∥∥tr
(
JSmin∪xiTx

)∥∥∥

for a transmit antenna or max
xjRx

∈S
′

Rx

∥∥∥tr
(
JSmin∪xjRx

)∥∥∥ for a receive

antenna. The temporal FIM is defined as the FIM obtained for a

specific subset of transmit and receive antennas at a given iteration

step, where qtxm = 1 if xmTx ∈ Stemp and qrxn = 1 if

xnRx ∈ Stemp; otherwise, they are set to zero.

Table 1: K-Subset selection algorithm

1 init: qtx = 0, qrx = 0, Amin = ∅, A∗
min = ∅,

2 for m = 1, ...,M and n = 1, ..., N
2.1 Select initial subset: Smin = {xmTx

,xnRx},

2.2 Update:

{
S′Tx = STx\xmTx

, S′Rx = SRx\xnRx
qtxm = 1, qrxn = 1

;

2.3 Set: set = 0, k = 2
2.4 while k < K

2.4.1






if S′Tx �= null than select x
′

iTx
s.t.

x
′

iTx
= arg max

xiTx
∈S

′

Tx

tr
(
JSmin∪xiTx

)

Update:






xTxt = x
′

iTx

JTxt = tr

(
J
Smin∪x

′

iTx

)

2.4.2






if S′Rx �= null than select x
′

jRx
s.t.

x
′

jRx
= arg max

xjRx
∈S

′

Rx

tr
(
JSmin∪xiTx

)

Update:
xRxt = x

′

jRx
;

JRxt = tr

(
J
Smin∪x

′

jRx

)

if JTx_temp > JRx_temp




Update: Smin = Smin ∪ {xTxt} ,
S′Tx = S

′

Tx\ {xTxt}
Set: k = k + 1, qxTxt = 1,

else




Update: Smin = Smin ∪ {xRxt} ,
S′Rx = S

′

Rx\ {xRxt}
Set: k = k + 1, qxRxt = 1

go to (2.4)

2.5 Amin = Amin ∪ {qtx,qrx} ;
2.6 qtx = 0, qrx = 0, set = set+ 1;

end (2)

3 for index = 1 : set

3.1
select vectors

{
q∗txk ,q

∗
rxk

}
∈ Amin s.t.

arg min
qtxk

,qrxk
∈Amin

tr (CSA (qtxk ,qrxk))

end (3)

end
{
q∗txk ,q

∗
rxk

}

The proposed heuristic algorithm offers a fast, polynomial-time

approximation scheme that allows a multiple radar system to contin-

uously adapt its operation to changing conditions. It has a reduced

complexity of ∼ O (KMN (M +N)), where K is the number of

antennas in the final subset. Comparatively, an exhaustive search has a

complexity of ∼ O(2M+N ). For large numbers of radars, significant
computational savings are obtained through the use of the proposed

algorithm. For example, a 10×12 MIMO radar system with a subset
size of K = 6 will required 222 = 4, 194, 304 iterations with an
exhaustive search while the proposed heuristic algorithm requires

only 10×12×22×6 = 15, 840 iterations. The gap increases rapidly
for larger numbers of antennas. The proposed solution presents a

practical and useful way of approximating the exact solution. Another

advantage of the proposed algorithm is that it may be solved using
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distributed processors by solving MN subproblems defined by step

2.4 in Table 1. An important issue that needs to be addressed is how
closely the algorithm’s solution approximates the global optimum.

Additionally, since the selection of the active subset is reliant on

estimated values of the channel, the robustness of the proposed

algorithm to estimation errors should be evaluated. Next, a metric

for algorithm performance evaluation and robustness is defined.

3) Normalized approximation error: The proposed algorithm will

not necessarily provide a global optimum. Its performance may be

evaluated based on the normalized approximation error εK−set given
by

εK−set =
QK−set (q

∗
tx,q

∗
rx)−QK−set

(
q
opt
tx ,q

opt
rx

)

QK−set
(
q
opt
tx ,q

opt
rx

) . (12)

This performance error metric represents the effectiveness of the

proposed algorithms. A value of εK = 1 means that the received
suboptimal solution is twice the size of the optimal solution. The

metric, εK−set, refers to the fraction of additional localization MSE
incurred by the approximate approach when compared with the

optimal one.

IV. NUMERICAL ANALYSIS

The spatially diverse multiple propagation paths between the trans-

mit and receive radars have different error characteristics, depending

on the specific path loss, target reflectivity, effective bandwidth, and

transmitted power. In this section, numerical analysis is provided for

the proposed subset selection algorithm. A 5×7 MIMO radar system
(M = 5 and N = 7) is chosen for this analysis. To evaluate the effect
of the radars’ spread, four different angular spreads with respect to the

target are chosen, as illustrated in Figure 1 in Case 1 through Case 4.
The ranges from the transmit and receive radars to the target are set to

be all equal, i.e., RmTx
= RnRx = 10

3m, ∀m,n. This is equivalent
to setting all αm,n’s to be equal. Radar layouts with different

ranges with respect to the target position are generated by using

the same angular spread as before and setting the transmit radars’

ranges to [5; 3; 2.4; 3.4; 5]× 103m and the receive radars’ ranges to

[2.85; 2.85; 2.77; 2.97; 1.92; 1.82; 2.67]×103m. Case 5 through Case
8 in Figure 2 demonstrate these spreads. The target location is set
to the axis origin, (x, y) = (0, 0). Two target RCS models are used;
The first model is uniform reflectivity, denoted by h1, supporting the

evaluation of system geometry, with the target RCS factored out. The

second RCS model is h2, mimicking a scenario of two transmitters

with high reflectivity conditions (transmitters 1 and 5), while one
exhibits significant loss (transmitter 2).
The subset size is set to K = 6. The subset selection algorithm,

proposed in Section III, is applied to the system layouts given in

Figure 1. At first, all cost factors vtx and vrx are set to be equal

and ptxmax = 100 × 15×1. The resulting subsets selected for Case
1 through Case 4, where h2 is used to model the target RCS, are
given in Table 2.

Table 2: RCS model h2.

q∗tx Tx, vtx = 1 q∗rx Rx, vrx = 1 QK−set
Case 1 1, 0, 0, 0, 1 0, 1, 1, 0, 0, 1, 1 3.88

Case 2 1, 0, 0, 0, 1 1, 1, 0, 0, 0, 1, 1 4.32

Case 3 1, 0, 0, 0, 1 1, 1, 0, 0, 0, 1, 1 7.4

Case 4 1, 0, 0, 0, 1 0, 0, 1, 1, 1, 1, 0 5.95

In all four cases, transmitter 1 and 5 are chosen as active radars
in the subset, as they have the best channel conditions in the system.

The receivers selected for the subset are the ones that provide the best

angular spread, following a given selection of transmitters. Next, Case
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5 through Case 8 are evaluated with h1 as the target RCS, eliminating
the target reflectivity effect and concentrating on the geometric layout

of the system. The resulting subset selections are as provided in Table

3. Transmitters 1, 2, and 3 are selected, as before, since they are
closer to the target, compared with transmitter 1 or 5. On the receiver
side, receiver 6 is selected in all four cases, as it is located closer to
the target. As in the previous analysis, receivers that minimize the

distance to the target and maximize angular spread are added to the

subset. For that reason, receiver 1, 2, or 3 is added instead of receiver
5, in most cases. Although receiver 5 is located closer to the target, it
does not always have a good angular position with respect to receiver

6. An exhaustive search will result with the same selections for the
antennas subsets and the same MSE performance for all cases (Case

1 through Case 8), represented by QK−set (q
∗
tx,q

∗
rx). As before, a

decision vector with various cost factors for each antenna is used

for Case 5 through Case 8. The transmit cost factors are chosen as
vtx = [1, 1, 7, 1, 5] and the receive cost factors are chosen as vrx =
[2, 3, 1, 1, 1, 5, 1]. The resulting subset selections, with different cost
factors, are as presented in Table 4.
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Fig. 3. Averaged normalized approximation error, ε̄K−set, and averaged
normalized MSE error, ǭMSEmin set , for Cases 5, 6, 7, and 8 for a range of
set size values K = 4, 5, ..., 10.

Table 3: RCS model h1
q∗tx Tx, vtx = 1 q∗rx Rx, vtx = 1 QK−set

Case 5 0, 1, 1, 1, 0 0, 0, 1, 0, 1, 1, 0 2.26

Case 6 0, 1, 1, 1, 0 1, 1, 0, 0, 0, 1, 0 6.80

Case 7 1, 1, 1, 1, 0 1, 0, 0, 0, 0, 1, 0 11.12

Case 8 0, 1, 1, 1, 0 1, 0, 0, 0, 0, 1, 1 6.70

The integration of different cost values changed the final selection

of antennas for one of the cases (Case 6), for which the constraint on
the total cost, Kυ, imposed an adaptation in the antennas selection

to integrate one with lower cost. This results in a slight increase in

the MSE performance.

Table 4: RCS model h1 and K
υ = 17

q∗tx Tx q∗rx Rx QK−set Kυ

Case 5 0, 1, 1, 1, 0 0, 0, 1, 0, 1, 1, 0 2.26 16

Case 6 0, 1, 1, 1, 0 1, 0, 0, 0, 0, 1, 1 6.90 17

Case 7 1, 1, 1, 1, 0 1, 0, 0, 0, 0, 1, 0 11.12 17

Case 8 0, 1, 1, 1, 0 1, 0, 0, 0, 0, 1, 1 6.70 17

In order to evaluate the influence of the fast approximation on

solution quality, the normalized approximation error is evaluated

numerically for the systems given in Figure 2, Case 5 through Case
8. The channel h is chosen randomly at each iteration, from a

complex Gaussian distribution. Different target positions are selected

at random in each iteration, uniformly distributed within a square

of dimensions ∆x = ±100 and ∆y = ±100 around the axis
origin (x, y) = (0, 0). A set of 1000 simulations is performed,

each with a different target location and channel matrix. At each

simulation, the normalized approximation error is evaluated and an

average normalized approximation error is generated.

The normalized approximation error is evaluated for a range of K
values. The results are given in Figure 3. The approximate algorithm

solution follows the optimal one in more than 99% of the cases.

Case 3 and Case 4 have almost no errors when compared with an
exhaustive search. The larger the size of the subset, the smaller

the error is. Overall, all algorithms follow the optimal solution

determined by exhaustive search closely.

The following may be deduced from the numerical analysis: The

channel conditions affect the choice of antennas selected for a given

subset. Antennas with better channel conditions and shorter distances

to the targets are favorable over others. The use of the term channel in

this context refers to the overall attenuation over a given propagation

path between transmit radarm, the target, and receive radar n, defined

as channel (m,n). The angular spread of the transmit and receive
antennas with respect to the target impacts the selection of the active

antennas. As higher angular spread results in lower MSE, the choice

of a subset that also minimizes the localization MSE is reliant on

the geometric layout of the system. Cost factors affect the manner

in which radars are added to the subset, such that radars with good

channel condition that are assigned a high cost factor are replaced

by ones with lower operational cost. The fast approximate algorithm

follows the optimal performance of an exhaustive search with high

efficiency. A match of more than 99% is achieved, when compared

with an exact algorithm.

V. CONCLUSIONS

An efficient method has been developed for the identification

of a subset of K transmit and receive antennas that maximizes

radar system performance in terms of target localization accuracy.

The selection problem has been defined as a KP and a fast ap-

proximation algorithm, based on a greedy strategy with multi-start

local search, has been proposed. The algorithm supports distributed

processing of MN subproblems and has a reduced complexity of

∼ O (KMN (M +N)). Comparatively, an exhaustive search has a
complexity of ∼ O(2M+N ). For large numbers of radars, significant
computational savings are obtained through the use of the proposed

algorithm. Cost parameters have been introduced to integrate decision

factors in the selection process. The algorithm has been shown to

perform very close to the optimum, with little or no penalty in terms

of the final localization MSE.
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