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ABSTRACT

Many real-life applications are nonlinear by nature.
Moreover, in order to have a physical interpretation,
some constraints should be incorporated in the signal or
image processing technique, such as the non-negativity
of the solution. This paper deals with the non-negative
pre-image problem in kernel machines, for nonlinear pat-
tern recognition. While kernel machines operate in a
feature space, associated to the used kernel function, a
pre-image technique is often required to map back fea-
tures into the input space. We derive a gradient-based
algorithm to solve the pre-image problem, and to guar-
antee the non-negativity of the solution. Its convergence
speed is significantly improved due to a weighted step-
size approach. The relevance of the proposed method is
demonstrated with experiments on real datasets, where
only a couple of iterations are necessary.

1. INTRODUCTION

Constraints are often required to ensure the physical in-
terpretation of many signal and image processing tech-
niques. In pattern recognition on grayscale images, such
as deconvolution, deblurring or denoising applications,
the result should be a potential valid image. Commonly
stored with 8 bits per sampled pixel, each pixel can
have 2% values within the interval [0,255], defined by
the weakest intensity (0 for black) and the strongest one
(255 for white). As the intensity carries the information,
numerous applications give rise to grayscale images with
a small number of intense pixels, i.e., many pixels have
null values. This is the case in many imaging problems,
spanning areas such as biomedical and astrophysics [1].
For this reason, one often includes non-negativity con-
straint on the solution, which leads to zero-valued pixels.
In early studies, the non-negativity constraint was in-
troduced for signal deconvolution by Thomas in [2] and
Prost et al. in [3]. Image deconvolution was studied
by Thomas et al. in [4], while Snyder et al. introduced
image deblurring in [5]. More recently, multiplicative al-
gorithms for signal restoration were studied by Lantéri
et al. in [1]. Most of these researches only focus on
linear systems [6, 7], while many real-life applications
exhibit nonlinear behavior.

Within the past decade or so, kernel-based machines
have been increasingly used in machine learning [8].
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Achieving high accuracy with low computational cost
[9], they have been highly successful in solving many
nonlinear problems in classification, regression, predic-
tion and pattern recognition, only to name a few. They
rely on the kernel trick, which transforms a linear algo-
rithm into a nonlinear one as long as it can be expressed
exclusively in terms of inner products between data. By
using a positive semi-definite kernel instead of the in-
ner product, we implicitly map the data from the input
space into a feature space using a nonlinear map func-
tion. The kernel is called reproducing kernel and the
corresponding feature space is the so-called reproducing
kernel Hilbert space (RKHS).

Even though mapping to a feature space is impor-
tant, it is usually more interesting to study patterns in
the input space rather than their counterparts in the
RKHS. However, both spaces are not in bijection and
very few elements of the latter have a pre-image in the
former. In general, the exact pre-image may not exist
and, if it exists, it might not be unique. This defines
the pre-image problem, as one seeks an element of the
input space whose image, by the same kernel function,
is as close as possible to some element in the feature
space. Many techniques have been presented in litera-
ture in order to solve such nonlinear optimization prob-
lem. Mika et al. introduced this optimization problem
and proposed a fixed-point iterative method in [10]. In
[11], a multidimensional-scaling (MDS) method was in-
troduced, while lately, in [12], a more direct method us-
ing relationship between inner-products was presented.
See [13] for a recent review with several applications in
signal processing.

In [14], we showed that the pre-image can be defined
with a non-negative additivity of its contributions, by
writing the pre-image as a linear model with the avail-
able data. However, the non-negativity of the pre-image
has not been studied before. This paper deals with
nonlinear pattern recognition under non-negativity con-
straint on the pre-image. To this end, we show that
a gradient descent/ascent scheme can be prescribed for
solving the pre-image problem, which is somewhat sur-
prising due to the non-linearity and non-convexity of
the optimization problem. By controlling its stepsize
at each iteration, we guarantee the non-negativity of
the solution. Moreover, by weighting the stepsize by
the actual value, we derive an algorithm that converges
faster, where the sparsity of the solution is privileged. A
fortuitous side-effect of the proposed strategy is its re-
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Figure 1: Schematic illustration of the pre-image problem for the denoising problem. A given noisy data & is

mapped to ®(&), then projected into the subspace spanned by the most relevant principal axis o1, @2, . ..

,©m. The

denoised pattern v is mapped back into the input space, to x*.

markable self-regularization property. This is illustrated
on an image denoising task, where only a couple of it-
erations were necessary. The proposed strategy outper-
forms conventional unconstrained pre-image techniques.
The rest of the paper is organized as follows: In the
next section, we introduce kernel-based machines with
the kernel PCA and describe the denoising scheme. In
Section 3, we study the pre-image problem for pattern
recognition, illustrated with a gradient approach, while
in Section 4, we consider imposing non-negativity con-
straint on the pre-image. Section 5 gives experimental
results illustrating the efficiency of the proposed method
on real handwritten digits from the MNIST datasets.

2. KERNEL PCA FOR PATTERN
RECOGNITION AND DENOISING

Let IR? be the input space to which we associate the
Euclidean dot product z; - ; for any x;,x; € R

Let k: R x R — IR? be a positive semi-definite ker-
nel, that is »°, ; asak(x;, xj) > 0 for all a;,a; € R

and x;,z; € R?. The Moore-Aronszajn theorem [9]
states that every positive semi-definite kernel is associ-
ated with a unique reproducing kernel Hilbert space H,
and vice-versa. This statement is mathematically ex-
pressed by a mapping function, ®: R? — H, from the
input space into the feature space, such that x(x;, ;) =
(®(x;), (x;))%, for any x;,z; € RY, where (-, - )y
defines the inner product in H.

Next, we study a particular kernel-based machine for
nonlinear pattern recognition: kernel PCA, a nonlinear
version of the mostly used Principal Component Anal-
ysis (PCA). The main idea in PCA is to extract the
most relevant directions, and thus the pertinent sub-
space, from a collection of available data. These di-
rections correspond to the eigenvectors with the highest
eigenvalues of the correlation matrix. The same concept
can be applied in the feature space, which give rise to
the kernel PCA algorithm.

To this end, each data is mapped into a feature
space with ®: RY — H, where conventional PCA is

applied. Let ®(x1), P(x2),...,P(x,) € H denote the
mapped data. In practice, one does not require the ex-
plicit form of the map, since most computations can
be done using the concept of the kernel trick, i.e.,
with (®(x;), ®(x;))n, for i,7 = 1,2,...,n. By anal-
ogy to PCA, each relevant axis ¢ is the eigenvector of
Ao = C?® ¢, where C? is the correlation matrix between
the mapped data, namely C* = 1 Sy ®(xj) B(ay) "
In addition, each eigenvector ¢ lies in the span of
the ®-images, thus can be defined by some coeffi-
cients aq,a9,...,a, such that ¢ = Y I | a; D(x;). It
is easy to see that these coefficients are obtained by
solving the eigen-problem: Aa = %K «, where a =
[@1 az --- )" and K is a n x n matrix defined by
k(zg, ;) = (D(x;), D(x;))n, for 4,5 =1,2,...,n. This
allows to construct the most relevant subspace in the
feature space H, without the need to exhibit any of its
elements.

In many pattern recognition applications, one needs
to have an access on some elements of the RKHS. Con-
sider the denoising problem using kernel PCA, where
the relevant subspace is assumed to be a denoised sub-
space. Let & be a data corrupted by noise, and let ®(z)
be its image in the feature space. To provide a denoised
version of the latter, it is projected onto the relevant
subspace. Thus the resulting projection can be written
as a linear expansion in terms of the n ®-images, namely

U):Z%‘ ®(x;), (1)

where v; = Y00 D0 i au i K(Z, @), with only m
eigenvectors being retained [15]. This is illustrated in
Figure 1.

3. PRE-IMAGE PROBLEM FOR PATTERN
RECOGNITION: A GRADIENT APPROACH

Many pattern recognition techniques require, not only
the feature (1) in the feature space, but also its counter-
part in the input space, e.g., the signal space. Getting
back, from the feature space to the input space, is the
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Table 1: Gradient of the objective function (3) for most commonly used kernels, with respect to .

Kernel Expression VaJ(x)
n
Polynomial kp(Ti, zj) = (c+ ;- ;)P Z’yipnp,l(:ci, )X, +php_i1(x,x)x
=l
Sigmoid ks(@i, ;) = tanh(c (zi - x;) +0) | > %1 —rd(@i @) cai+c(l - wg(z, )z
i=1 .
: _ 1 L 1
Exponential kp(xi, ;) = exp( (x; - x;)) - Z% kp(xi, ) T + - kp(T, ) T
7 i:ll .
Gaussian ka(mi, ;) = exp(—goz |@; — x;|?) o Z% ka(xi, x) (x; — )
i=1

pre-image problem. This principle has shown its rele-
vance in many signal processing techniques; see [13] for
a recent review.

More precisely, we seek an element of the input
space whose image in the feature space is defined by
¢ = >0, 7®(x;). The element is the so-called pre-
image of ¥. Nonetheless, such pre-image may not exist
or it may not be unique. Thus, we seek an approximate
pre-image x* whose image ®(x*) is as close as possible
to ¢. This is the pre-image problem, defined by mini-
mizing the distance between the corresponding features
in the RKHS, namely
(2)

@ = argmin [l — & ()3,

where || - || denotes the norm in the RKHS.
In the general case, this optimization problem can
be written as

z* = argmax J(x),
x

where J(x) is the objective function defined by

J(x) = Z% K(x;, @) — %m(m,w). (3)

and the term 137", > iy i k(xi, x5) is removed
since it is independent of . At the optimum, x*, the
gradient of the aforementioned objective function goes
to zero. Let VJ(x) denotes this gradient, namely

(4)

" Ok x;, T 10k(x, x
R
i=1

This is a general form for all kernels. This expression
along with the objective function itself vary with the
type of the kernel. Let us first consider the well-known
Gaussian kernel. This so-called radial kernel, depending
on the Euclidean distance ||x; — x|, is defined by

ke (T, x) = exp(—=——|l@i — x;°)

27|

for any x;,x; € IR, where o is a positive bandwidth
parameter. The gradient, with respect to @, of the re-
sulting objective function is given by

n
>
i=1

1 n
o Z”yi ka(xi, ) (x; — ).
i=1

Oexp(—gz|®i — %)
2

Ve (x) oy

Another used kernel is the polynomial, a direct gener-
alization of the linear inner product. This projective
kernel relies on the inner product x; - ;. It is defined
by kp(xi, @) = (c+ x; - x;)P, where p € N and some
positive c¢. In this case, we have

Vol (@) = S viphiy 1 (@i @) @ — phiy (@,2) @,
=1

where k,_1(zi, ;) = (c+ x; - ;)P . Table 1 summa-
rizes the gradient with respect to @ of the most com-
monly used kernels.

We are now in a position to derive gradient-based
algorithms to solve the pre-image problem, subject to
the non-negativity constraint.

4. SOLVING THE PRE-IMAGE PROBLEM
UNDER NON-NEGATIVITY CONSTRAINTS

As aforementioned, some constraints are needed to en-
sure the physical interpretation of many signal and more
precisely image processing techniques.
We consider the following constrained optimization
problem:
x* = arg max J(x)

subject to x >0

In this expression, the inequality defines the non-
negativity of each component of the vector . Off-line
optimization techniques are often computationally ex-
pensive and not efficient to solve this nonlinear opti-
mization problem. Iterative techniques are essentially
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Noisy images

Fixed-point [10]
(100 iterations)

MDS technique [11]

Non-negativity with
fixed stepsize (6)
(100 iterations)

Non-negativity with
weighted stepsize (7)
(5 iterations)

Figure 2: A set of ten “5”-digit images corrupted by a salt-and-pepper noise of density 0.1 (first row), on which we
applied the kernel PCA for data denoising. The pre-image results using the fixed-point iterative algorithm [10] are
illustrated (second row), the MDS technique [11] (third row), the non-negative gradient pre-image (6) (fourth row)
and the non-negative pre-image with the iterative schema (7) (last row).

based on a fixed-point approach, however only appropri-
ate for convex objective function (see for instance [1]).
However, our objective function (3) is non-convex, thus
the fixed-point technique is not appropriate.

Next, we consider an iterative scheme, updating
x(t + 1) from x(t). Let [ - ]; denotes the {-th entry
operator, and z,(t) the ¢-th component of x(t), namely
[x(t)]¢ . Component-wise, the gradient ascent scheme is
defined by

zo(t +1) = z0(t) +ne(t) [V (2(1))]e,

where n7,(t) is a stepsize factor used to control conver-
gence, and [V J(x(t))]¢ denotes the ¢-th entry of the
gradient of the objective function (3). A condition on
7¢(t) must be satisfied to ensure the non-negativity of
z¢(t + 1) depending on the sign of the gradient. It is
easy to see that, when the gradient is positive, there is
no restrictions on the stepsize; when it is negative, the
stepsize is upper-bounded by
I(g(t)
ne(t) < TN Tz,
(Ve (x(t))]e
While one can use a stepsize value for each direction in
the gradient ascent algorithm, it is often interesting to
have a single stepsize value at a given instance t. We
shall define the stepsize n(t) such that
ze(t

(Vo (x(t))]e
This allows us to write the updating rule in matrix form,
with

(6)

n(t) < In[in -

x(t+1) =x(t) +n(t) Vo (2(t)).

Next, we propose an approach to converge more
rapidly toward null values. To this end, the stepsize
7¢(t) is weighted by the value of x,, which increases the
speed to get towards zero. This leads to the expression

wo(t + 1) = ao(t) +ne(t) 2e(t) [V (2(t))]e.

The factor of convergence is now ny(t) x¢(t), which re-
sults in a new condition on 7,(¢) for the non-negativity
of the solution. For this purpose, we write the above
expression as

zo(t+1) = 20(t) (1 + ne(t) [V (z(1))]e),

and obtain the non-negativity condition on 1 +
Ne(t) [V (2(t))]e. While no restriction is required
when the gradient is positive, in the other case, when
[VzJ(x(t))]e < 0, the stepsize must be upper-bounded
by 1/[VgJ(x(t))]¢. In matrix form, the update rule can
be written as

2(t+1) = 2(t) +n(t) diaglz (D) Va T (2(1),  (7)
where diag[x(t)] is a diagonal matrix whose entries
are the elements of vector x(t). To impose the non-
negativity, we consider a single stepsize value 7(t) with

1

Vol @) ®)

n(t) < min—

Next, we study the performance of the gradient-based
approach, with either the updating rule (7) (resp. (6)),
and the non-negativity condition (8) (resp. (5)).
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5. EXPERIMENTS

In this section, we illustrate the relevance of the pro-
posed method in an image denoising task: real hand-
written digits taken from the MNIST datasets'. We
have chosen the digits “5”. Each image is defined by
grayscale 28 x 28 pixels, with values normalized be-
tween 0 and 1. Thus, each image can be written as
a 784-dimensional vector. The images were corrupted
by adding a Salt-and-Pepper noise, with 0.1 density. A
set of 500 images was used to train the kernel PCA with
50 eigenvectors retained. Another set of 10 images, cor-
rupted by the same noise settings, was used to demon-
strate the relevance of this denoising technique.

We compared the proposed method to two state-
of-the-art techniques: the MDS approach [11], and the
fixed-point iterative method [10]. The latter is defined
by the iterative expression

S vika(xi, ®(t)) x;
Y vika (T, ®(t)

These methods have been successfully applied on many
pattern recognition problems, mainly using the Gaus-
sian kernel. For this reason, we consider the same ker-
nel, the bandwidth was fixed for all algorithms (o = 8).
While the maximum number of iterations was set to 100,
only 5 iterations were applied for the weighted stepsize
algorithm.

We applied the aforementioned techniques along
with the proposed algorithms. In Figure 2, the first row
shows the noisy images of the digit “5”. Results from the
proposed method are given in the last two rows. They
should be compared to the results obtained by the fixed-
point iterative method and illustrated in the second row,
and to the MDS technique illustrated in the third row.
As we can see, the fixed point iterative algorithm failed
in such applications. The MDS technique did not suc-
ceed in recognizing the patterns, as well as the simple
gradient with a fixed stepsize. The proposed method,
with the weighted stepsize, has shown to be relevant,,
the patterns were recognized and all the handwritten
digits identified.

z(t+1) =

6. CONCLUSION

In this paper, we studied the non-negativity of the pre-
image in kernel machines. We showed that it is easy
to impose the non-negativity using a simple gradient-
based scheme. By considering a weighted stepsize in
the iterative algorithm, the convergence speed was sig-
nificantly improved, with remarkable self-regularization
property. While the optimization problem is nonlinear
and highly non-convex, the proposed technique gave ex-
tremely accurate results, with performance illustrated
on handwritten digits taken from the MNIST datasets.
In future work, we are interested in a general framework
for nonlinear non-negative pattern recognition, includ-
ing this work as well as our previous work [14]. In the
latter, we considered the non-negativity in the coeffi-
cients of the linear model that defines the pre-image.

1The datasets are available  from  the address

http://yann.lecun.com/exdb/mnist/.
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