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ABSTRACT

The goal of this paper is to study the learning abilities of
adaptive networks in the context of cognitive radio networks
and to investigate how well they assist in allocating power
and communications resources in the frequency domain. The
allocation mechanism is based on a social foraging swarm
model that lets every node allocate its resources (power/bits)
in the frequency regions where the interference is at a min-
imum while avoiding collisions with other nodes. We em-
ploy adaptive diffusion techniques to estimate the interfer-
ence profile in a cooperative manner and to guide the mo-
tion of the swarm individuals in the resource domain. A
mean square performance analysis of the proposed strategy
is provided and confirmed by simulation results. Numerical
examples show that cooperative spectrum sensing improves
the performance of the swarm-based resource allocation tech-
nique considerably.

1. INTRODUCTION

Some of the features that are attracting more and more at-
tention in the current research on radio networks are dy-
namic access, to improve the efficiency of conventional spec-
trum access protocols [1], and self-organization (SO) capa-
bilities. SO is especially important in femtocell networks,
where the deployment of a potentially huge number of user-
operated femto-access points makes centralized schemes hard
to implement and prone to a heavy signaling traffic. Con-
versely, decentralized resource allocation strategies are cer-
tainly more appealing. However, purely decentralized ap-
proaches might lead to highly inefficient systems. Hence, a
more viable approach consists in endowing the radio nodes
with the capability to learn from the environment and ex-
change information only with their immediate neighbors, to
find out the most appropriate radio resources. Similarly, in
cognitive radio, opportunistic (or secondary) users (SU’s),
are allowed to use temporally unoccupied communication re-
sources, such as frequency bands, time slots or user codes,
under the constraint of not interfering (or producing a tol-
erable interference) with licensed (or primary) users.

The deployment of decentralized radio access strategies
was proposed, for example, in [2], where a distributed co-
operative spectrum sensing technique exploited the intrin-
sic sparsity of the radio resource allocation. An important
source of inspiration for intrinsically self-organizing systems
comes from biological systems, where there is plenty of ex-
amples of robust systems, capable of solving difficult orga-
nization tasks by exploiting local cooperation among indi-
viduals, without the need for a central processor. Recent
works illustrate how cooperation over adaptive networks can
model collective animal behavior and self-organization in bi-
ological networks such as birds flying in formation [3], fish
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foraging for food [4], or bacteria motility [5]. The applica-
tion of swarming mechanisms to decentralized resource al-
location problems was proposed in [6], where the resource
allocation mechanism mimicked the motion of a flock of
birds searching for food, assuming a static interference pro-
file and ideal communication channels among swarm indi-
viduals. The extension to random interactions among indi-
viduals was carried out in [7], to accommodate for random
packet drops and quantization noise. In parallel, in [3] it was
proposed an adaptive mechanism, based on diffusion adap-
tation schemes [8,9], to guide the motion of the swarm indi-
viduals in dynamic environments, through local cooperation.
In comparison with other distributed approaches that rely
on, for example, consensus-based techniques [10], [11], [12],
adaptive networks avoid the need to iterate over data and do
not require all nodes to converge to the same equilibrium (or
consensus state). Instead, both time- and spatial-diversity of
the data are exploited to endow the networks with learning
and tracking abilities.

In this paper we combine the swarm-based resource allo-
cation scheme with the diffusion adaptation algorithm. The
basic contributions of this paper are: (a) the extension of the
social foraging model proposed in [6] to incorporate a real-
time distributed spectrum estimation technique based on
diffusion adaptation; (b) the derivation of the mean square
properties of the diffusion adaptive filter applied to the spec-
trum estimation problem; and (c) the application of the pro-
posed procedure to the dynamic resource allocation problem
in the frequency domain. Notation: we use bold face let-
ters to denote random variables and normal font letters to
denote their realizations. Matrices and vectors are respec-
tively denoted by capital and small letters.

2. SWARM MODEL

We consider a set ofM secondary users who are interested in
sharing communications resources in an n-dimensional Eu-
clidean space. A typical setting is one where the resource
space is the time-frequency domain (i.e., n = 2) and every
secondary user is trying to access time and/or frequency slots
that are vacant. To keep the notation general, the resource
selected by agent k is described by a vector xk ∈ R

n, de-
noting, for example, a frequency subchannel and a time slot.
The interaction between the cognitive nodes can be modeled
as an undirected graph G = (V,E), where V ≡ {1, 2, ...,M}
denotes the set of nodes and E ⊆ V ×V is the edge set. Typ-
ically, there is a link (edge) between two nodes if the received
power from one node to the other node exceeds a minimum
threshold value (and this depends on the channel properties).
The graph modeling the network topology can be described
by the adjacency matrix A := {akl}, composed of nonneg-
ative entries akl ≥ 0, the degree diagonal matrix D, whose
diagonal entries are dkk :=

∑M

l=1 akl, and the Laplacian L,
defined as L = D−A. We denote by Nk the set of neighbors
of agent k, namely, Nk = {l ∈ V : akl 6= 0}. We formulate
the dynamic radio access problem as the minimization of the
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following potential function

J(x, t) =
M
∑

k=1

σk(xk, t) +
1

2

M
∑

k=1

M
∑

l=1

aklJar(‖xl − xk‖), (1)

where σk(·, ·) ∈ C
1 : Rn × R → R represents the interference

power over the optimization domain (e.g., the time-frequency
plane) perceived by node k at time t and x := (xT

1 , . . . , x
T
M )T .

The goal of the optimization problem is to find optimal po-
sitions x such that the potential function in (1), evaluated
a time t, is minimized. The minimization of the first term
of (1) leads every node to find a position xk such that the
overall interference power is at a minimum. The second term
of (1) is an attraction/repulsion potential function given by

Jar(‖xl − xk‖) = Ja(‖xl − xk‖) − Jr(‖xl − xk‖). (2)

This potential incorporates a short range repulsion term
Jr(‖xl − xk‖), whose effect is to avoid collisions among the
cognitive nodes, and a long range attraction term Ja(‖xl −
xk‖), whose goal is to induce a swarm cohesion behavior, e.g.
to avoid an excessive spread of the selected radio resources
in the time-frequency domain. Hence, in summary, mini-
mizing (1) leads each node to dynamically allocate its own
resources in time-frequency regions where there is less inter-
ference, helps to avoid conflicts among users, and limits the
spread of the occupied domain. We choose attraction and
repulsion forces so that there is a unique distance at which
the two forces balance: the so called equilibrium distance in
the biological literature [13].

A possible way to achieve the distributed minimization
of (1) is to use a gradient based optimization procedure,
whereby every node starts from an initial guess, say x0, and
then updates its resource allocation vector xk in time ac-
cording to the following discrete-time implementation:

xk[i+ 1] = xk[i]− ǫ∇xk
J(x, iT )

= xk[i]− ǫ∇xk
σk(xk, iT ) + ǫ

∑M

l=1 akl g(xl[i]− xk[i]),
(3)

k = 1, . . . ,M , where T is the sampling time, i is the time
index, x(0) = x0 and g(·) is a vector function defined as

g(xl − xk) = [ga(‖xl − xk‖)− gr(‖xl − xk‖)](xl − xk), (4)

where ga(‖xl − xk‖)(xl − xk) and gr(‖xl − xk‖)(xl − xk)
are the gradients of Ja(‖xl − xk‖) and Jr(‖xl − xk‖) with
respect to xk, respectively. In this paper we consider attrac-
tion/repulsion functions having a constant attraction term
of the form ga(‖y‖) = cA and an unbounded repulsion term
of the form gr(‖y‖) = cR/‖y‖

2. Unbounded repulsion pre-
vents collisions among the secondary users. The equilibrium
distance between attraction and repulsion forces is properly
adjusted through the positive parameters cA and cR. In
our setting, the equilibrium distance is chosen to be propor-
tional to the bandwidth of the frequency subchannel, in the
frequency domain, or to the duration of the elementary time
slot. Furthermore, the coefficients akl depend on the dis-
tance between the nodes, and two nodes communicates with
each other only if they are neighbors. Hence, two nodes
k and l with no direct link between them (i.e., for which
akl = 0), may end up with the same allocation vector; this
occurrence is what is known as spatial reuse of frequency or
time slots. Under these conditions, it is possible to establish
that the swarming algorithm converges exponentially with a
speed depending on the profile features and on the second
eigenvalue of the Laplacian matrix of the graph.

In the next section, we show how to adaptively estimate
the gradient of the interference profile, ∇xk

σk(xk, t), in a dis-
tributed manner and through local cooperation. This gradi-
ent vector is needed in (3) to update the swarming behavior.

3. DISTRIBUTED SPECTRUM ESTIMATION

3.1 PSD Basis Expansion

Let Φq(f) denote the power spectral density (PSD) of the
signal transmitted by the q-th primary user (PU). The PSD
can be represented as a linear combination of some preset
basis functions, say, as:

Φq(f) =
J
∑

j=1

bj(f)wqj = bT0 (f)wq (5)

where b0(f) = [b1(f), ..., bJ (f)]
T is the vector of basis func-

tions evaluated at frequency f , wq = [wq1, ..., wqJ ] is a vector
of weighting coefficients representing the power transmitted
by the q-th PU over each basis, and J is the number of basis
functions. For J sufficiently large, the basis expansion in (5)
can well approximate the transmitted spectrum. In partic-
ular, we consider continuously differentiable basis functions,
such as raised cosines, Gaussian pulses, etc. Assuming N ac-
tive users are transmitting, the overall transmitted spectrum
can be expressed as

σT (f) =
N
∑

q=1

J
∑

j=1

bj(f)wqj = bT1 (f)w (6)

where b1(f) = 1 ⊗ b0(f), with ⊗ denoting the Kronecker
product, and w = [w1, . . . , wN ] ∈ R

JN . The propagation
medium introduces path loss attenuation between primary
and secondary users. Let pqk be the path loss coefficient
between the q-th primary user (PU) transmitter and the k-
th secondary user (SU). Under the assumption of spatial
uncorrelatedness of the channels, the signal received by the
secondary node k can be expressed as

σk(f) =

N
∑

q=1

pqk

J
∑

j=1

bj(f)wqj + σ2
k = bTk (f)w + σ2

k (7)

where pk = [p1k, ..., pNk] is the vector of path-loss coefficients
between every transmitter and the k-th receiver, bk(f) =
pk ⊗ b0(f) and σ

2
k is the noise power at the k-th node.

3.2 Diffusion Adaptation

At every time instant i, every node k observes the received
PSD in (7) over Nc frequency samples fm = fmin : (fmax −
fmin)/(Nc − 1) : fmax, for m = 1, . . . , Nc, according to the
linear model:

dmk (i) = bTk,i(fm)w0 + σ2
k + vmk,i (8)

where vmk,i is a zero mean random variable with variance

σ2
v,m. The temporal index i in the regressor expression

(bTk,i(fm)) takes into account the possibility of node mobility
and possible variations in the channel conditions over time.
The receiver noise power σ2

k can be pre-estimated with high
accuracy using an energy detection over an idle band. It can
then be removed from the expression in (8). Collecting mea-
surements over Nc contiguous channels, we obtain a vector
linear model:

dk(i) = Bk,iw0 + vk,i (9)

where Bk,i = [bTk,i(fm)]Nc

m=1 ∈ R
Nc×JN with Nc > JN , and

vk,i is a zero mean random vector with covariance matrix
Rv,i. The cooperative estimation problem can be cast as the
distributed minimization of the following cost function:

Jw(w) =
M
∑

k=1

E‖dk(i)−Bk,iw‖
2 (10)
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where E(·) denotes the expectation operator. Several diffu-
sion adaptation schemes have been developed for such pur-
pose in [8]. In this paper, we employ a normalized version
of the Adapt-then-Combine (ATC) algorithm without mea-
surement exchange [9]. For the vector minimization problem
in (10), the normalized ATC algorithm reads as follows:







ψk,i = wk,i−1 + µiHk,iB
T
k,i[dk(i) −Bk,iwk,i−1]

wk,i =
∑

l∈Nk
cl,kψl,i

(11)

where µk is a positive step size chosen by node k and
Hk,i = (BT

k,iBk,i)
†, where (·)† denotes the pseudo-inverse op-

eration. The first step in (11) involves local adaptation where
node k updates using the new observations {di(k), Bk,i}.
The second step is a combination step where the interme-
diate estimates ψl,i, from the neighborhood l ∈ Nk, are
combined through the coefficients {cl,k}. The combination
matrix C = {cl,k} ∈ R

M×M satisfies cl,k ≥ 0 if l ∈ Nk and
1TC = 1T . The resulting estimate of node k at time i is
denoted by wk,i. In the case in which the unknown parame-
ter w0 varies slowly with time, the ATC diffusion algorithm
allows online tracking of the interference profile variations
enabling the swarm to dynamically allocate resources over
the frequency domain. Then, referring to expression (6), an
estimate of the derivative of the interference profile in the
frequency fm at time i can be computed by node k as:

σ′
k,i(fm) =

N
∑

q=1

J
∑

j=1

b′j(fm)wq,j
k,i = b′Tk,i(fm)wk,i (12)

where b′j(f) is the known derivative of the j-th basis function.

3.3 Performance Analysis

In this section we analyze the performance of the normalized
diffusion algorithm following the approach of [9] and extend-
ing it to the case of a vector linear model as in (9). In what
follows we view the estimates wk,i as realizations of a ran-
dom process wk,i and analyze the performance of the algo-
rithms in terms of their mean square behavior. We consider
a general algorithmic form that includes various normalized
diffusion algorithms as special cases. Thus, we consider a
general normalized diffusion filter of the form






















φk,i =
∑M

l=1 c1,l,kwl,i−1

ψk,i = φk,i + µk

∑M

l=1 sl,kHk,iB
T
k,i[dk(i)−Bk,iφk,i]

wk,i =
∑M

l=1 c2,l,kφk,i

(13)

where the coefficients {c1,l,k},{sl,k} and {c2,l,k} are generic
non-negative real coefficients corresponding to the (l, k) en-
tries of the matrices C1, S, and C2, respectively, satisfying

1TC1 = 1T , 1TS = 1T , 1TC2 = 1T . (14)

Different types of algorithms can be obtained as special cases
of (13) by choosing different matrices {C1, S, C2}. The ATC
diffusion algorithm without measurement exchange in (11) is
obtained by choosing C1 = S = I and C2 = C. To proceed
with the analysis, we assume a linear measurement as in (9).
Using (13), we define the error quantities w̃k,i = w0 −wk,i,

ψ̃k,i = w0−ψk,i, φ̃k,i−1 = w0−φk,i−1 and the global vectors:

w̃i =







w̃1,i

...
w̃M,i






ψ̃i =







ψ̃1,i

...
ψ̃M,i






φ̃i−1 =







φ̃1,i−1

...
φ̃M,i−1






. (15)

We also introduce a diagonal matrix

M = diag{µ1IJN , . . . , µM IJN} (16)

and the extended weighting matrices

C1 = C1 ⊗ IJN C2 = C2 ⊗ IJN S = S ⊗ IJN (17)

where ⊗ denotes the Kronecker product operation. We fur-
ther introduce the following quantities

Di = diag

{ M
∑

l=1

sl,kHl,iB
T
l,iBl,i

}M

k=1

(18)

gi = ST col{Hk,iB
T
k,ivk(i)}

M
k=1. (19)

The matrices Hk,i and Bk,i depend on the path loss vector
pk,i of node k at time i. Let γi = [pk,i]

M
k=1 denote the overall

path loss vector of the network at time i. Then, the matrix
Di and the noise vector gi are function of γi and we have

φ̃i−1 = CT
1 w̃i−1

ψ̃i = φ̃i−1 −M[Di(γi)φ̃i−1 + gi(γi)]

w̃i = CT
2 ψ̃i (20)

or, equivalently,

w̃i = CT
2 [I −MDi(γi)]C

T
1 w̃i−1 − CT

2 Mgi(γi). (21)

3.3.1 Mean Stability

Assuming the regression data are spatially and temporally
white and taking the expectation of (21), we get

Ew̃i = CT
2 [I −MEDi(γi)]C

T
1 Ew̃i−1 (22)

Using Lemma 1 from [9], we conclude that w̃i is asymptot-
ically unbiased if the matrix I − MDi(γi), where Di(γi) =
EDi(γi), is stable for all i. Then, exploiting the expression
in (18), the algorithm converges in the mean for any step-size
satisfying 0 < µk < 2 for all k.

3.3.2 Mean Square Performance

In this section we examine the mean-square performance of
the diffusion filter (13). Now, following the energy conserva-
tion arguments of [14], we evaluate the weighted norm of w̃i

obtaining

E‖w̃i‖
2
Σ = E‖w̃i−1‖

2
C1(I−Di(γi)M)T C2ΣCT

2
(I−MDi(γi))C

T

1

+

+ E[gTi (γi)MC2ΣC
T
2 Mgi(γi)] (23)

where Σ is an Hermitian positive-definite matrix that we are
free to choose. Moreover, setting

G(γi) = E[gi(γi)g
T
i (γi)] (24)

we can rewrite (23) as a variance relation of the form

E‖w̃i‖
2
Σ = E‖w̃i−1‖

2
Σ′ + Tr[ΣCT

2 MG(γi)MC2] (25)

where Tr(·) is the trace operator, and

Σ′ = C1C2ΣC
T
2 C1T − C1Di(γi)MC2ΣC

T
2 CT

1 + (26)

−C1C2ΣC
T
2 MDi(γi)C

T
1 + C1Di(γi)MC2ΣC

T
2 MDi(γi)C

T
1 .

Let σ = vec(Σ) denote the vector that is obtained by stack-
ing the columns of Σ on top of each other. Using the Kro-
necker product property vec(UΣV ) = (V T ⊗ U)vec(Σ), we
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can rewrite Σ′ in (26) as σ′ = vec(Σ′) = Fσ, where the
matrix F is given by

F = (C1 ⊗ C1){I − I ⊗ (Di(γi)M)− (Di(γi)M)⊗ I +

+ (Di(γi)M)⊗ (Di(γi)M)}(C2 ⊗ C2). (27)

In the following we assume that the path loss vector γi → γ0,
where γ0 is a fixed constant vector, as i → ∞. Then, using
the property Tr(ΣX) = vec(XT )Tσ and taking the limit of
(25) as i→ ∞, we can recast (25) as follows:

E‖w̃i‖
2
Σ−Σ′ = [vec(CT

2 MG(γ0)
TMC2)]

Tσ. (28)

The steady-state mean-square deviation (MSD) at node k is
defined as:

MSDk = lim
i→∞

E‖w̃k,i‖
2. (29)

Then, if the step sizes {µk} are small enough so that the
matrix (I − F ) is invertible and choosing σ = (I − F )−1mk,
the MSD of node k tends to

MSDk = [vec(CT
2 MG(γ0)

TMC2)]
T (I − F )−1mk, (30)

where mk = vec(diag(ek)⊗ IJN), with ek being column vec-
tors with a unity entry at position k and zeros elsewhere. In
the next section we illustrate how these theoretical expres-
sions match well with simulation results.

4. SIMULATION RESULTS

In this section, we provide numerical examples illustrating
the performance of the proposed technique combining the
swarm-based resource allocation method, illustrated in Sec-
tion 2, and the distributed cooperative sensing algorithm
using ATC diffusion adaptation, shown in Section 3. We
consider a connected network composed of 15 SU’s, plus two
PU’s. The topology of the network is shown in Fig. 1, where
the green dots represent SU’s, while the red dots indicate the
PU’s. We assume that a PU moves from the initial position,
indicated as the orange dot, to the final position represented
by the red dot, so that the interference perceived by the sec-
ondary network is time-varying. We consider a polynomial
path loss model pqk(dqk) = (dqk/d0)

−γ (γ = 2), where dqk
is the distance between the q-th PU and the k-th SU. The
cognitive SU’s scan Nc = 80 channels between 30 and 45
MHz and use J = 16 Gaussian basis functions to model the
basis expansion of the transmitted spectrum. In this sim-
ulation, we consider a combination matrix C that simply
averages the intermediate estimate from the neighborhood,
hence, such that cl,k = 1/Nk for all l. We assume the pres-
ence of 15 resources (to be allocated from as many cogni-
tive users) that are initially scattered randomly across the
frequency spectrum. At the k-th iteration of the updating
rule (3), each node communicates to its neighbors the posi-
tion it intends to occupy, i.e., the scalar xi[k] representing
a frequency subchannel. In the application at hand, there
is an intrinsic quantization of the frequency resources given
by the subchannel bandwidth. In our implementation, we
let the system evolve according to (3) until successive dif-
ferences in allocation become smaller than the bandwidth of
a frequency subchannel. At that point, the evolution stops
and every SU is allowed to transmit over the selected chan-
nel. We consider an interference profile as in Fig. 2, where
the dashed black curve depicts the true transmitted spec-
trum, whereas the continuous red and dashed blue curves
represent, respectively, the estimation obtained using ATC
diffusion (at convergence) and without cooperation among
the nodes. We notice how diffusion adaptation fits well the
spectrum profile while the non-cooperative approach yields

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PU

PU

Figure 1: Secondary network. The red nodes denote primary
users and the green nodes denote secondary users.

a rather poor estimation. To evaluate the performance of
the distributed estimation technique, in Fig. 3 we show the
steady-state MSD of the ATC diffusion algorithm compared
with the theoretical result in (30). The steady-state values
are obtained by averaging over 200 independent experiments
and over 100 time samples after convergence. We can observe
that the simulation results match perfectly with the theoret-
ical values. An example of resource allocation is shown in
Fig. 2, where the green dots represent the final frequency
channels chosen at convergence by the network nodes. The
parameters of the swarm are cA = 0.025, cR = 0.25. It
is evident how the resources avoid the position occupied by
primary users, tend to keep the spread as small as possible
while avoiding collisions among the allocations of different
users. Observe that the number of allocated channels is less
than the number of requested resources. This means that
a certain number of nodes have picked up the same chan-
nels. Nevertheless, we have checked numerically that the
nodes having chosen the same resource are not neighbors
of each other, so that there are no real collisions. In other
words, the algorithm is capable of implementing a decen-
tralized mechanism for spatial reuse of frequencies. To mea-
sure the effectiveness of the distributed resource allocation
strategy, in Fig. 4 we report the interference level, versus
the number of nodes composing the secondary network, av-
eraged over the frequency slots occupied by the SUs, after
convergence. The result is averaged over 200 independent
realizations. We considered two different values of the re-

30 35 40 45
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P
S

D
 (

m
W

/H
z
)

True Spectrum

ATC Diffusion

No Cooperation

Figure 2: Comparison of the result of spectrum estimation
through cooperative diffusion adaptation and without coop-
eration among the users.
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Figure 3: Steady-state MSD versus node index.

ceiver noise power σ2, which determines the variance of the
estimation noise vmk,i in (8). The parameters of the swarm
are cA = 0.025, cR = 0.25 and the interference profile is
the same considered in Fig. 2. From Fig. 4, we notice
that, using a non cooperative approach, the estimation of
the interference profile gradient is quite poor and some re-
sources end up being allocated by mistake in the regions
occupied by the primary users, trapped because of the esti-
mation errors affecting the algorithm. This explains the high
level of interference perceived in this case. The performance
of the allocation can be remarkably improved adopting the
cooperative diffusion adaptation approach. Indeed, as the
estimation accuracy improves, each resource tends to move
towards the interference-free regions, thus making the over-
all swarm experience a smaller total interference. As the
number of nodes M increases, the allocation performance
improves because the swarming algorithm exploits a cooper-
ative capability given by the cohesion force. This intrinsic
robustness determines that the agents, allocated over the low
interference bands, tend to form cohesive blocks that exert
an attraction towards the agents trapped by mistake over
the regions of the spectrum occupied by the primary users.
Moreover, in the cooperative case, an increase in the num-
ber of nodes also improves the estimation performance, thus
simplifying the resource allocation task. From Fig. 4, we
also note, as expected, how a stronger noise leads to worst
allocation performance in both cases. Nevertheless, the per-
formance of the cooperative approach is less sensitive. This
means that the performance of the resource allocation based
on the swarming algorithm can be considerably improved if
every node cooperates with its own neighbors to adaptively
estimate the interference profile.

5. CONCLUSIONS

In this paper we have proposed a dynamic resource alloca-
tion technique combining a distributed diffusion algorithm,
for implementing cooperative sensing, with a swarming tech-
nique, for allocating resources in a parsimonious way (i.e.,
avoiding unnecessary spread in the frequency domain), yet
avoiding collisions. A mean square analysis for the diffu-
sion adaptation filter has been derived and simulation results
match well with the theoretical results. Finally, the proce-
dure has been applied to the dynamic resource allocation
problem in the frequency domain. Numerical results show
the improvement that results in the resource allocation per-
formance due to the cooperative estimation of the spectrum.
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