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ABSTRACT
Modulation detection, which is one of the major tasks

of an intelligent receiver in a cognitive radio communication
systems, is an intermediate step between signal detection and
demodulation. In this paper, we present a time-frequency
based method for the detection of modulation type in the
presence of noise. The Discrete Evolutionary Transform is
used to distinguish PSK and FSK signals. The performance
of the proposed method is compared with one of the Wavelet
Transform based methods in the literature. Simulation results
confirmed the virtue of the proposed method.

1. INTRODUCTION

Cognitive Radio (CR) communication systems can intelli-
gently sense and interpret the communication environment
and easily adapt the transmitting and receiving parameters
in order to provide the most efficient bandwidth to the users
and prevent inter-user aliasing [1]. CR’s have three crucial
tasks: To sense the frequency spectrum, to detect the mod-
ulation type of received signal and to analyze the communi-
cation protocol. The rapid development in communication
protocols and interfaces leads the use of different type of sig-
nal and modulation. These advances come with the need
of demodulation without any a priori information about on
the modulated signal. Modulation detection algorithms can
help to distinguish the modulation type of the signal at the
receiver, with no or minimum a priori information such as
carrier frequency or symbol rate. Software Defined Radios
[2] allow the designer to use different radio functions as a
software on the same hardware. While all the modulation,
demodulation and encoding process are performed by soft-
ware in Software Defined Radio, the modulation detection
process in such multi-mode communication systems reduces
the operation time as well as providing design ease.

The classification of analogue modulations types (Am-
plitude Modulations, Frequency Modulations, etc.) is rel-
atively straightforward process. The variance of the mod-
ulated signal envelope can be used for the distinction [3].
Digital modulation classification techniques are widely sep-
arated into two main categories. The first one is likelihood
based approaches [4, 5]. The likelihood based algorithms re-
lies on the principle of comparing the predefined likelihood
ratio with a specific threshold. Although these classifiers are
optimal in the sense of statistics, they should know the like-
lihood function of the signal and require high computational
load. In the second approach, the algorithms extract a dis-
tinctive feature of the received signal and employ this feature
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to identify the modulation type. Hence, they do not need
any a priori information about the signal and they are called
feature-based algorithms [6, 7]. The instantaneous ampli-
tude, phase and frequency transitions of the different types
of modulated signals will have different spectral character-
istics in the time-frequency domain. In [7] the authors use
Wavelet Transform (WT) to extract a distinctive feature to
classify the digitally modulated signals. Constantbandwidth
methods such as the Wavelet and Short-Time Fourier Trans-
form provide estimates of signal spectrum with poor time-
frequency (TF) resolution. The evolutionary spectral theory
for the analysis of non-stationary random processes [8] has
been extended to consider discrete-time, finite-support sig-
nals [9, 10, 11]. The Discrete Evolutionary Transform (DET)
provides a tool for high-resolution representation of multi-
component signals with linear instantaneous frequencies. In
this paper, the DET is used to extract a distinctive feature
and to distinguish the signals which are modulated by Phase
Shift Keying (PSK) and Frequency Shift Keying (FSK) in the
presence of channel noise.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the Discrete Evolutionary Transform by Gabor
Expansion. Section 3 describes the process of feature extrac-
tion using the Discrete Evolutionary Transform and presents
DET calculations of digitally modulated signals. The re-
sults and the comparison of classification performances with
Wavelet Transform based detection algorithm are presented
in Section 4. Conclusions are made in Section 5.

2. DISCRETE EVOLUTIONARY TRANSFORM BY
GABOR EXPANSION

For a discrete-time signal x(n),n = 0,1, · · · ,N − 1, its Dis-
crete Evolutionary Transform (DET) is defined in terms of
sinusoids with time–varying amplitudes as:

x(n) =
K−1

∑
k=0

X(n,k)e jωkn (1)

where ωk = 2kπ/K, K is the number of frequency samples
and X(n,k) the time-varying kernel of the DET. The above
equation is analogous to the Wold–Cramer representation
used to model the non–stationary processes as a combina-
tion of sinusoids with time–varying and random amplitudes
[8]. The evolutionary spectrum of x(n) is then given by,

S(n,k) =
1
K
|X(n,k)|2 (2)

[9]. It is shown in [12] that the kernel X(n,k) may be cal-
culated using conventional signal representations such as the
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Gabor expansion, that uses non-orthogonal basis, or the Mal-
var expansion that uses orthogonal basis.

Traditional discrete Gabor expansion [13] represents a
signal as a combination of basis functions that are obtained
by translating a single window uniformly in time and fre-
quency. Hence Gabor basis functions allow a sinusoidal
and constant-bandwidth analysis. However, if the signal to
be analyzed does not satisfy the constant-bandwidth condi-
tion, i.e., if the frequency components change with time, its
TF representation will not be parsimonious [9]. A multi–
window Gabor expansion is presented in [10], using basis
functions h̃i,m,k(n), that are obtained by scaling and translat-
ing in time and frequency a mother window:

h̃i,m,k(n) = h̃i(n−mL)e jωkn. (3)

Then the multi-window Gabor representation of x(n),

x(n) =
1
I

I−1

∑
i=0

M−1

∑
m=0

K−1

∑
k=0

ai,m,kh̃i(n−mL)e jωkn. (4)

Synthesis windows h̃i(n) are obtained from a unit-energy
mother window g(n) by scaling in time hi(n) = 2i/2g(2in),
i = 0,1, · · · , I − 1, and periodically extending by N. Here I
denotes the number of scales used and L,M,L′,K positive
integers satisfy the condition LM = L′K = N. L and L′ are
the sampling steps in time and frequency, M and K are the
number of samples in time and frequency respectively. The
Gabor coefficients ai,m,k, may be calculated by the analysis
windows γ̃i(n) that are bi-orthogonal to h̃i(n) [13]:

ai,m,k =
N−1

∑
n=0

x(n)γ̃∗i (n−mL)e− jωkn. (5)

Now, by considering the representations of x(n) in equations
(1) and (4), the DET kernel X(n,k) is

X(n,k) =
1
I

I−1

∑
i=0

M−1

∑
m=0

ai,m,k h̃i(n−mL)

=
1
I

I−1

∑
i=0

Xi(n,k) (6)

where Xi(n,k) show the kernels calculated for different
scales. They may be combined using arithmetic average or
other averaging techniques [10]. Substituting ai,m,k in (5) into
(6), we get

X(n,k) =
N−1

∑
ℓ=0

x(ℓ) w(n, ℓ) e− jωkℓ (7)

where w(n, ℓ) is a time-dependent window function given by

w(n, ℓ) =
1
I

I−1

∑
i=0

M−1

∑
m=0

γ̃∗i (ℓ−mL) h̃i(n−mL). (8)

By considering all possible scales, a high-resolution repre-
sentation for the signal may be obtained by combining the
kernel set {Xi(n,k)} [10]. However, this is not sufficient in
general; because signals with wide-band components may
require non-sinusoidal basis functions for a compact repre-
sentation. In such cases, a fractional time–frequency rep-
resentation will be more appropriate for the spectral signals
[14].

3. MODULATION DETECTION BY DISCRETE
EVOLUTIONARY TRANSFORM

3.1 Signal Models
The digitally modulated signal, which is corrupted by addi-
tive channel noise, at the input of the modulation detector can
be defined as

y(n) = x(n)+ v(n),0 ≤ n ≤ N0 −1 (9)

where x(n) is the transmitted modulated signal. The chan-
nel noise is modeled by a zero mean complex Gaussian noise
with the variance of σ2

v . As we will concentrate on the detec-
tion of phase shift keyed and frequency shift keyed signals,
the time-varying mathematical expressions of PSK and FSK
modulated signals are given below,

xPSK (n) = Re
{

g(n)

√
2E
N0

e j2π(m−1)/Re j2π fcn
}

=

√
2E
N0

g(n)cos
[

2π fcn+
2π
R

(m−1)
]

1 ≤ m ≤ R,0 ≤ n ≤ N0 −1, (10)

xFSK (n) = Re
{

g(n)

√
2E
N0

e j2πm∆ f ne j2π fcn
}

=

√
2E
N0

g(n)cos [2π fcn+2πm∆ f n]

1 ≤ m ≤ R,0 ≤ n ≤ N0 −1. (11)

Here, E is signal energy per symbol, fc is the carrier fre-
quency , R is the number of phase or frequency which carries
the transmitting information, ∆ f is frequency spacing and the
N0 the period of the input symbol sequence. g(n) function
determines the pulse shape of the signal and usually chosen
as an unit hight square wave which has the same period with
the message signal.

3.2 Feature Extraction By DET
In [7] the authors proved that the application of Wavelet
Transform (WT) on a digitally modulated signal will result
in distinctive patterns for different types of signals. The mag-
nitude of the WT gives an important clue about the type of
the modulation. The authors also proved that the histogram
of the magnitude of the WT will distinguish the modulation
levels of FSK and PSK signals. The PSK modulated sig-
nal has (R-1) peak, whereas the FSK modulated signal has
(R/2+1) peaks depending on the modulation level.

Digitally modulated signals are time-varying signals, so
time-frequency tools can be used to analyze the instanta-
neous changes in phase and frequency. Recent researches
[15, 16] focus on time-frequency analysis methods are for
modulation detection. When the signal is a non-stationary
random process these algorithms can be inadequate. We em-
ploy DET to provide high-resolution representation of time-
varying signals. In Fig. 1 and Fig. 2 the evolutionary spec-
trums calculated by the sinusoidal DET are given for 2PSK
and 2FSK modulated signals.

These figures refer to the input signal which is
[1,0,1,1,1,0,1,0]. We can easily see that spectrum has dis-
tinct peaks when the phase of the input signal changes in
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Figure 1: DET based evolutionary spectrum of the 2PSK Sig-
nal.

PSK modulation. The amplitude of the spectrum remains
steady when the input signal does not change. Peaks oc-
cur in two different frequencies in FSK modulation, when
the input signals changes. An important fact which can be
interpreted from the figure is that, the energy of the signal
fluctuates rapidly when the phase or the frequency of the in-
put signal changes. In PSK spectrum, fluctuation levels are
higher than the FSK spectrum. This property can be used as
a feature to classify two different modulation types.

The detection process is shown in Fig. 3. The DET of
received signal is calculated by Gabor coefficients. Then, we
calculate the energy of the signal spectrum at the phase or fre-
quency change moments. After comparing the results with a
threshold value, we can easily decide the type of the modu-
lation. The threshold for a specific modulation level can be
analyze by calculation of the minimum value of Evolutionary
Spectrum. At the last step, the modulation level of the signal
can be find by analyzing the histogram of the signal’s DET
as in [7].

4. SIMULATION RESULTS

The performance of the system system is computed for three
different levels (R ∈ 2,4,8) of PSK and FSK modulated sig-
nal. The carrier frequency and the sampling frequency is
chosen as 15 kHz and 150 kHz respectively. The symbol
rate is 1200 symbols per second. The rate of classification
results are obtained via taking the average of Monte Carlo
trials. The number of symbols in each signal sequence is
50 and 100. Rates of correct classification results are given
in Table 1, Table 3 and Table 5. The percentages of correct
classification with Wavelet Transform based detector [7] are
also given in Table 2, Table 4 and Table 6 under the same
simulation conditions.

Figure 2: DET based evolutionary spectrum of the 2FSK Sig-
nal.

Figure 3: DET based Modulation Detection Algorithm.

5. CONCLUSIONS

In this paper, we present a time-frequency based method for
the detection of modulation type in the presence of noise,
in cognitive radio communication systems. When the fre-
quency components of the modulated signal change with
time, our algorithm offers a high-resolution analysis. The
performance of the proposed method is compared with one
of the existing Wavelet Transform based method in the litera-
ture. Simulation results confirmed the virtue of the proposed
method under the same noise conditions.
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Table 1: DET Based Classification Results Between PSK and
FSK (SNR=13dB)

Modulation Type PSK FSK
2PSK 99 % 1 %
4PSK 97 % 3 %
8PSK 98 % 2 %
2FSK 0 % 100 %
4FSK 0 % 100 %
8FSK 0 % 100 %

Table 2: WT Based Classification Results Between PSK and
FSK (SNR=13dB)

Modulation Type PSK FSK
2PSK 98 % 2 %
4PSK 95 % 5 %
8PSK 96 % 4 %
2FSK 0 % 100 %
4FSK 0 % 100 %
8FSK 0 % 100 %

Table 3: DET Based Classification Results For MPSK
(SNR=13dB)

Modulation Type 2PSK 4PSK 8PSK
2PSK 99 % 1 % 0 %
4PSK 0 % 98 % 2 %
8PSK 0 % 0 % 100 %

Table 4: WT Based Classification Results For MPSK
(SNR=13dB)

Modulation Type 2PSK 4PSK 8PSK
2PSK 94 % 6 % 0 %
4PSK 0 % 83 % 17 %
8PSK 0 % 0 % 100 %

Table 5: DET Based Classification Results For MFSK
(SNR=15dB)

Modulation Type 2FSK 4FSK 8FSK
2FSK 97 % 2 % 1 %
4FSK 0 % 100 % 0 %
8FSK 0 % 0 % 100 %

Table 6: WT Based Classification Results For MFSK
(SNR=15dB)

Modulation Type 2FSK 4FSK 8FSK
2FSK 93 % 7 % 0 %
4FSK 0 % 100 % 0 %
8FSK 0 % 0 % 100 %
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