
DISTRIBUTED TARGET DETECTION IN CENTRALIZED WIRELESS SENSOR
NETWORKS WITH COMMUNICATION CONSTRAINTS
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ABSTRACT

Distributed inference is an important and challenging problem in
wireless sensor networks (WSNs). In this paper we consider dis-
tributed detection of a target in centralized WSNs (i.e. WSNs with
a fusion centre) subject to communication constraints. We focus on
the parallel network topology, where the sensors can only exchange
information with the fusion centre, and consider conditionally de-
pendent observations. We develop two types of local decision rules
for the sensors (binary and binary with abstention), based on the
Neyman-Pearson criterion, and a fusion rule based on a support
vector machine (SVM). Under these circumstances we show em-
pirically that, even when individual sensors with very poor perfor-
mance are used, both local configurations are able to provide very
good detection rates as the number of nodes increases.

1. INTRODUCTION

Dense wireless sensor networks (WSNs) composed of a large num-
ber of sensors are becoming more and more popular for many ap-
plications thanks to the increasing availability of cheap, small and
intelligent sensors [13]. Distributed or decentralized learning and
inference is an important and challenging problem in WSNs that
has attracted much attention from the signal processing and ma-
chine learning communities [7]. From a statistical signal processing
point of view, inference problems can be classified into two broad
categories: decision or detection problems, where the goal is dis-
criminating between a finite number of hypothesis, and estimation
tasks, where the goal is inferring an unknown signal.

We focus on distributed target detection in centralized WSNs
with a fusion centre subject to communication constraints. Under
this setting, the goal of the WSN is providing enough information to
the fusion centre to discriminate between two hypothesis (absence
or presence of a target) in an energy efficient way, i.e. transmit-
ting only informative decisions from the sensors with a minimum
number of bits/observation. The distributed detection problem in
WSNs has been widely studied over the last two decades, with most
work concentrating on the extension of classical results and meth-
ods from centralized detection to the distributed setting, particularly
for conditionally independent observations [12, 4].

In this paper we consider the distributed learning model with
abstention proposed in [6], where the fusion center queries the sen-
sors about their measurements at a known location, and apply it to
the distributed target detection problem, where the target’s location
is unknown. Note that this model is similar to the decentralized
detection problem with censoring sensors, originally proposed by
[8] and extended later on by several authors [3, 2]. However, our
approach deviates from those approaches in four main issues: the
empirical rather than theoretical view taken, the use of a physically-
inspired model for the observations based on the free space propa-
gation model, the simple and independent criterion adopted for the
decision rule in each sensor, and, most notably, in the fact that we
consider conditionally dependent observations.

The paper is organized as follows. In Section 2 we introduce
the problem, briefly describing each of the stages that must be con-
sidered. Then, we develop the local decision rules for the sensors,

based on the Neyman-Pearson (NP) criterion, in Section 3, and the
fusion rule, based on a support vector machine (SVM), in Section
4. The good performance of the proposed scheme is demonstrated
through simulations in Section 5, and the conclusions and future
lines close the paper in Secion 6.

2. PROBLEM STATEMENT

In this paper we analyze the problem of distributed detection in cen-
tralized wireless sensor networks (WSNs). We consider a rectangu-
lar observation area, A = X1 × X2 = [−∆x1, ∆x1]× [−∆x2, ∆x2],
inside which N identical sensors are placed at fixed positions xi =
(x1,i, x2,i) (1≤ i≤ N, −∆x1 ≤ x1,i ≤ ∆x1, −∆x2 ≤ x2,i ≤ ∆x2) and
a single fusion centre is located at an arbitrary (but known) posi-
tion, (x∗1, x∗2). We focus on the parallel network configuration [11],
where the sensors are only allowed to communicate with the fusion
centre (either directly or through multiple hops), whereas local ex-
changes of information between them are forbidden. Each sensor
takes samples from some physical magnitude (yi[k] for 1 ≤ k ≤ K)
at its own position, either periodically or when commanded by the
fusion centre, and the goal of the WSN is detecting (and eventually
even locating and tracking) a target entering its range.

From a mathematical point of view we can model this prob-
lem as a hypothesis test with with two possible situations: the
noise or negative hypothesis (H−1), where no target is present in-
side A, and the target or positive hypothesis (H1), where one or
more targets are located inside A. Under the negative hypothesis
the sensor’s measurements are simply independent identically dis-
tributed white Gaussian noise (WGN) samples, i.e. yi[k] = wi[k]
with wi[k]∼ N(0,σ2

w) and N(0,σ2
w) denoting a univariate Gaussian

PDF with zero mean and variance σ2
w. Under the positive hypoth-

esis, the sensor’s measurements are the sum of the signal received
from the target, zi[k], plus WGN, i.e. yi[k] = zi[k]+wi[k].

Regarding the physical magnitude, here we consider cheap sen-
sors which are only able to measure a received signal’s strength
(RSS). Thus, zi[k] =

√
P(di[k]), where P(di[k]) is the instantaneous

power of the signal received by the i-th sensor at the k-th sampling
instant.1 Assuming the free space propagation model [9],

P(di[k]) = P(d0)

(
di[k]
d0

)−η

, (1)

where di[k] = ‖xi− x̃[k]‖2 is the Euclidean distance between the i-
th sensor and the target, located at x̃[k], P(d0) is the received power
at a reference distance d0 (usually d0 = 1 m.), and η is the propa-
gation constant (typically 2≤ η ≤ 4).

Given the strict energy and bandwidth constraints characteristic
of WSNs, the sensors cannot transmit their observations directly to
the fusion centre. Therefore, each sensor applies an independent
local decision rule on each new observation,

λi[k] = Λi(yi[k]; θθθ i),

1In fact, the measurements at each sensor will be y2
i [k] = (zi[k]+wi[k])2.

However, we can work equivalently with yi[k] instead of y2
i [k].
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where Λi is the quantization or decision rule used by the i-th sensor,
θθθ i its parameters, and λi[k] ∈ {α1, . . . , αQ} its result for the k-
th sample, which can only take Q different quantized values. We
assume that all the sensors use the same decision rule and, following
the approach proposed in [6, 7], consider two types of decision rules
based on thresholds on the RSS: binary and binary with abstention.2

After quantization every sensor transmits λi[k] to the fusion
centre, either directly or following some routing protocol through
the network. Here we consider error-free communication channels,
with each sensor transmitting at most one bit per observation. Fi-
nally, the fusion centre receives all the information from the sensors
and takes a global decision about the presence or absence of a target
by applying some global detection or fusion rule:

Ĥ[k] = Γ(λλλ [k]; φφφ),

where Ĥ[k] ∈ {H−1, H1} corresponds to the decision of the fu-
sion centre (i.e. the estimated hypothesis) at the k-th time instant,
λλλ [k] = [λ1[k], . . . , λN [k]]> are the quantized decisions from all the
sensors, and φφφ denotes the parameters of the fusion rule. In this pa-
per we assume no computational or energy constraints for the fusion
centre. Moreover, we also assume that a network training or cali-
bration stage can be performed prior to its operative stage. Hence,
we consider a support vector machine (SVM) based fusion rule.

3. LOCAL DETECTION RULES FOR THE SENSORS

3.1 Binary Detection Rule
The simplest local decision rule is the binary detection: only two
levels are used for quantizing the output of each sensor (i.e. Q = 2)
and the decision rule is simply given by

λi[k] = Λb(yi[k]; γ) =

{
−1, |yi[k]|< γ;
+1, |yi[k]|> γ;

(2)

where λi[k] = −1 corresponds to a negative decision (i.e. target
absence or H−1) and λi[k] = +1 to a positive decision (i.e. target
presence or H1), and its only parameter is the threshold, γ = γ f a,
which is obtained using the Neyman-Pearson criterion for a fixed
false alarm rate, Pf a. Under the null hypothesis, the PDF for the
observations of each sensor is

p(yi[k]|H−1)∼ N(0,σ2
w),

and the false alarm probability is given by3

Pf a = 2
∫

∞

√
γ f a

p(yi[k]|H−1) dyi[k]. (3)

Since p(yi[k]|H−1) is Gaussian, this integral can be easily solved,
obtaining a closed-form expression for the threshold:

γ = γ f a = 2σ
2
w

[
erfc−1(Pf a)

]2
, (4)

where erfc−1(x) denotes the inverse of the complementary error
function, defined as [1]

erfc(x) =
2√
π

∫
∞

x
exp(−t2) dt,

An interesting analysis for this decision rule can be provided
by noting that, according to the propagation model given by (1), the

2Note that this is equivalent to imposing communication constraints on
the network, as sensors are limited to transmitting at most a single bit per
channel use and on average they transmit even less.

3We consider the threshold, γ f a, over the instantaneous power received,
y2

i [k]. Thus, in (3) we have to use√γ f a instead.

Figure 1: Detection range for the binary local decision rule.

noise free observations, zi[k], only depend on the distance between
the sensors and the target. Hence, equating (1) to the false alarm
threshold, γ f a, we can easily obtain the detection radius,

rd = d0

(
γ f a

P(d0)

)−1/η

. (5)

Figure 1 shows the detection circle for a sensor placed at the origin.
On the one hand, the sensor should detect any target located inside
the circle (since the RSS is greater than the detection threshold),
with those targets not detected corresponding to misdetections due
to noise. On the other hand, outside this circle no target should be
detected (since the RSS is lower than the detection threshold), with
detections corresponding to false alarms caused again by noise.

Finally, note that the observations under hypothesis H−1 are
conditionally independent [12], i.e.

p(y[k]|H−1) =
N

∏
i=1

p(yi[k]|H−1),

meaning that the false alarm thresholds can be set independently
for each sensor and the binary decision rule given by (2) is opti-
mal from the point of view of obtaining the desired false alarm rate.
Note also that, for an error-free channel and the binary decision rule,
only positive decisions shall be transmitted: negative decisions are
uninformative and spend valuable network energy. The presence of
errors in the communications channel (e.g. the possibility of miss-
ing a transmitted message from a sensor) introduces uncertainty in
the negative decisions. However, if the error rate is not too large, the
energy saving obtained from not transmitting the negative decisions
compensates for this uncertainty.

3.2 Binary Detection Rule with Abstention
A slightly more complex local decision rule is the binary detection
with abstention: three levels are used for quantizing the output of
each sensor (i.e. Q = 3) using a decision rule given by

λi[k] = Λa(yi[k]; γ`, γh) =


−1, |yi[k]|< γ`;
0, γ` < |yi[k]|< γh;
+1, |yi[k]|> γh;

(6)

where λi[k] = −1 and λi[k] = +1 are associated again to the noise
and target hypotheses, H−1 and H1 respectively, whereas λi[k] = 0
corresponds to a new local hypothesis, H0, which denotes uncer-
tainty about the presence or absence of a target.

In this case the decision rule has two parameters, the low level
threshold, γ`, used to take a negative decision, and the high level
threshold, γh, used to take a positive decision. Both are obtained

413



again using the Neyman-Pearson criterion for fixed false alarm and
no detection rates, Pf a and Pnd respectively. The false alarm thresh-
old, γ f a, is still given by (4), whereas we require the PDF of the ob-
servations under the target hypothesis, H1, in order to obtain the no
detection threshold, Pnd . When the position of the target is known
(i.e. given di[k] or equivalently x̃) the PDF of the observations is
simply a Gaussian,

p(yi[k]|x̃,H1)∼ N(
√

P(di[k]),σ2
w).

Note that, in this situation the observations are still conditionally
independent, i.e.

p(y[k]|x̃,H1) =
N

∏
i=1

p(yi[k]|x̃,H1),

since the only randomness comes from the noise, which is indepen-
dent for each sensor. However, when the target’s position is un-
known this is no longer true, since the target’s position, x̃, becomes
a random variable. This means that the distance between the tar-
get and the observations, di[k], and the RSS, zi[k], become random
signals, and the PDF of each observation is now given by

p(yi[k]|H1) =
∫

A
p(yi[k]|x̃,H1)p(x̃|H1) dx̃

=
1

4∆x1∆x2

∫
A

p(yi[k]|x̃,H1) dx̃, (7)

where, in order to obtain the last expression in (7), we have assumed
a uniform distribution for x̃ inside the observation area,

p(x̃|H1) =

{
1

4∆x1∆x2
, x̃ ∈ A;

0, x̃ /∈ A.

Unfortunately, a closed-form expression for the integral in (7)
cannot be obtained due to the strongly nonlinear dependence of di[k]
on x̃. However, we only require p(x̃|H1) to obtain the no detection
threshold through the following integral,

Pnd =
1

4∆x1∆x2

∫ √
γnd

−√γnd

∫
A

p(yi[k]|x̃,H1) dx̃ dyi[k], (8)

which only needs to be solved once for a particular value of γnd .
Hence, we can take an empirical approach to this problem. First of
all, we generate a large number of samples for x̃ and approximate
p(yi[k]|x̃,H1) using impulses centered on the samples obtained,

p(yi[k]|x̃,H1)≈
1
M

M

∑
j=1

p(yi[k]|x̃ j,H1)δ (x̃− x̃ j), (9)

where M is the number of samples used for potential target’s loca-
tions, x̃ j (1 ≤ j ≤M) indicates the precise positions obtained, and
δ (·) denotes Dirac’s delta. Then, substituting (9) in (8) we obtain an
approximation for the no detection probability, Pnd ≈ J(γnd), where

J(γnd) =
1

2M

M

∑
j=1

[
erf

(√
γnd + x̃ j√

2σ2
w

)
+ erf

(√
γnd − x̃ j√

2σ2
w

)]
, (10)

and erf is the error function [1],

erf(x) =
2√
π

∫ x

0
exp(−t2) dt = 1− erfc(x).

Thus, the no detection threshold can be formally expressed as γnd =
J−1(Pnd). Finally, although (10) cannot be inverted to obtain an
analytical expression for γnd , we notice that it is a strictly increasing
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Figure 2: Thresholds for the binary detection rule with abstention.
(a) γ f a < γnd . (b) γ f a > γnd .

function of γnd , which implies that this threshold is unique and can
be easily determined by a simple one-dimensional grid search.

Note that, since γ f a and γnd have been obtained independently,
in principle we cannot determine which one is lower a priori.
Therefore, the final thresholds for the decision rule are established
as

γ` = min(γ f a, γnd),

γh = max(γ f a, γnd).

According to the threshold selection and the decision rule, two pos-
sibilities exist for the uncertainty region, as shown in Figure 2:
1. γ f a < γnd , as illustrated in Figure 2(a), meaning that γ` = γ f a,

γh = γnd and the uncertainty region corresponds to observations
classified as target presence (i.e. H1) by the low level threshold
and as target absence (i.e. H−1) by the high level threshold.

2. γ f a > γnd , as illustrated in Figure 2(b), meaning that γ` = γnd ,
γh = γ f a and the uncertainty region corresponds to observations
classified as target absence (i.e. H−1) by the low level threshold
and as target presence (i.e. H1) by the high level threshold.

In both cases there is no consensus between the two criteria (i.e.
we cannot guarantee simultaneously the desired false alarm and no
detection rates), so the sensor refrains from taking any final decision
(either positive or negative) and returns an abstention.

We remark that a similar analysis to the binary decision rule can
also be performed in terms of the detection and abstention radius, as
shown in Figure 3. Here the inner radius, rint , is obtained using γ`
in (5) instead of γ f a, whereas the outer radius, rext , is obtained us-
ing γh. Finally, we also notice that the results of the binary decision
rule with abstention can also be communicated to the fusion centre
using at most a single bit per observation [6, 7]: both positive and
negative decisions are transmitted, whereas those sensors which ab-
stain remain silent. Alternatively, note that in fact it may be more
efficient to allow those sensors that abstain to transmit instead of
those with negative decisions.

4. GLOBAL SVM-BASED FUSION RULE

In this section we briefly describe the global detection or fusion
rule, which is based on a support vector machine (SVM). In using
an SVM-based fusion rule we are making two assumptions:
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Figure 3: Detection and abstention ranges for the binary local deci-
sion rule with abstention.

1. The fusion centre is not constrained in energy or computational
power, as training and evaluating the SVM is much more re-
source consuming than the simple local decision rules consid-
ered for the sensors.

2. A training stage (i.e. network calibration) can be performed
using labelled inputs.

Under these circumstances, the SVM is known to provide a very
good performance for a wide range of detection problems [10].
Hence, using the SVM as the global detector amounts to consid-
ering a very powerful “black box” fusion rule, assumed to be able
to extract all the information contained in the inputs, so that we can
concentrate on studying the performance of the local decision rules.

There are two critical stages in working with an SVM: select-
ing the kernel and training it. Regarding the first isssue, we only
consider a linear kernel, since the dimension of the input space is
large enough to allow us to perform the separation between the two
hypothesis, as will be shown in Section 5. With respect to the sec-
ond issue, the SVM training stage (i.e. the obtention of both the
hyperparameters and the support vectors), it is performed using the
LIB-SVM package [5] with a balanced data set consisting of 480
samples corresponding to the negative hypothesis (i.e. noise only
measurements in the sensors) and 480 samples corresponding to the
positive hypothesis (i.e. signal plus noise). For this second case
we consider targets moving through the network following 6 pre-
specified trajectories (as part of the calibration stage) composed of
a fixed number of samples (20), as shown in Figure 4.

Figure 4: Trajectories used for training the SVM.
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Figure 5: Empirical approximation to p(yi[k]|H1) using (9) with
M = 106 samples.

5. RESULTS

In this section we present empirical results obtained through simu-
lations considering a 40000 m2 observation area with ∆x1 = ∆x2 =
100 m., i.e. A = [−100,100]× [−100,100]. Inside this area, a vari-
able number of sensors, N ∈ {10, 50, 100, 300, 500, 1000}, are
uniformly distributed. Note that the first case (N = 10) corresponds
to a very sparse sensor placement (with only 0.00025 sensors/m2),
whereas the last situation (N = 1000) corresponds to a much denser
WSN (with 0.025 sensors/m2), allowing us to study the perfor-
mance of the proposed local and global decision rules as the number
of sensors increases. A target may be located inside the observation
area or not. When a target is present, we assume that it transmits an
RF signal with P(d0) = 1 mW at d0 = 1 m and that the propagation
constant is η = 2. In both cases the noise power is σ2

w = 10−6.
We are interested in analyzing the global performance when we

combine cheap sensors with poor individual performance. Hence,
we set Pf a = Pnd ∈ {0.1, 0.2, 0.3, 0.4} and obtain the thresholds
for both decision rules. On the one hand, the false alarm threshold,
γ f a, is straightforward to obtain from (4) for the different values
of Pf a. On the other hand, for the no detection threshold, γnd , we
need to obtain first an approximation for p(yi[k]|H1), which does
not depend on the number of sensors. Figure 5 shows the empirical
approximation to this PDF obtained using N = 300 sensors and M =
106 uniformly distributed sample positions (i.e. N×M = 3× 108

distances), which clearly shows the exponential decay in the PDF.
Using this approximation we may obtain the thresholds and radius
for the binary detection with abstention rule, as shown in Table 1.
Note that in all cases γ` = γnd and γh = γ f a, implying that rext = rd .
In fact, this will be the usual situation, as illustrated in Figure 6,
since the thresholds only cross for Pf a = Pnd ≈ 0.47.

Once the thresholds for the local decision rules have been es-
tablished we generate the synthetic data and use them to train the
SVM as indicated in Section 4. After the training stage, Figure 7
shows graphically a typical situation where a target (black square)
is present on the bottom left portion of the observation area (nor-
malized to [−1,1]× [−1,1]) and sensors are represented by circles.
Finally, Table 2 shows the performance results in terms of precision
(percentage of correct decisions), sensitivity (percentage of correct
positive decisions) and specificity (percentage of correct negative

Table 1: Thresholds and radius for binary detection with abstention.
Pf a γ` γh rint rext
0.1 0.02×10−6 2.71×10−6 19.2 223.0
0.2 0.08×10−6 1.64×10−6 24.7 110.5
0.3 0.19×10−6 1.07×10−6 30.5 72.7
0.4 0.35×10−6 0.71×10−6 37.6 53.4
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decisions) as a function of the false alarm probability, whereas in
Table 3 we provide the same results as a function of the number of
sensors. Note that good results are obtained in all cases, both for
the binary local decision rule and the decision rule with abstention,
especially as the number of sensors grows, even for very poor false
alarm and no detection probabilities for the individual sensors.
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Figure 6: False alarm and no detection thresholds.
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Figure 7: Example of network state at a given instant for one target
(black square) and N = 300 sensors (circles) with Pf a = Pnd = 0.3:
internal radius (cyan line), external radius (magenta line), correct
detections (filled blue circles), no detections (unfilled blue circles),
abstentions (green circles) and false alarms (red circles).

Table 2: Performance as a function of Pf a for N = 1000 in terms of
precision (P), sensitivity (S) and specificity (E).

Abstention No Abstention
Pf a P S E P S E
0.1 0.9525 0.9458 0.9592 0.9748 0.9683 0.9812
0.2 0.9406 0.9421 0.9392 0.9658 0.9612 0.9704
0.3 0.9254 0.9192 0.9317 0.9371 0.9354 0.9387
0.4 0.9021 0.8967 0.9075 0.9096 0.9071 0.9121

Table 3: Performance as a function N for Pf a = 0.1 in terms of
precision (P), sensitivity (S) and specificity (E).

Abstention No Abstention
N P S E P S E
100 0.7106 0.6704 0.7508 0.7375 0.7133 0.7617
300 0.8650 0.8596 0.8704 0.8858 0.8754 0.8962
500 0.8967 0.8821 0.9112 0.9235 0.9187 0.9283
1000 0.9525 0.9458 0.9592 0.9748 0.9683 0.9812

6. CONCLUSIONS AND FUTURE LINES

In this paper we have considered distributed detection in central-
ized wireless sensor networks, where the sensors cannot exchange
information locally and are only allowed to transmit up to one bit
per observation to the fusion centre. We have described two simple
local decision rules (binary and binary with abstention) that can be
applied independently for each observation of each sensor, showing
empirically their good performance asymptotically (i.e. as the num-
ber of sensors increases) in combination with an SVM-based fusion
rule, even for correlated measurements and poor performance of
the individual sensors. Future work lines include providing a de-
tailed theoretical analysis of the proposed scenario, extending it to
location and tracking problems and considering the effect of trans-
mission errors on the global performance of the network.
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