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ABSTRACT

We propose a novel algorithm for the enhancement of noisy
reverberant speech using empirical-mode-decomposition
(EMD) based subband processing. The proposed algorithm
is a one-microphone multistage algorithm. In the first step,
noisy reverberant speech is decomposed adaptively into os-
cillatory components called intrinsic mode functions (IMFs)
via an EMD algorithm. Denoising is then applied to selected
high frequency IMFs using EMD-based minimum mean-
squared error (MMSE) filter, followed by spectral subtrac-
tion of the resulting denoised high-frequency IMFs and low-
frequency IMFs. Finally, the enhanced speech signal is re-
constructed from the processed IMFs. The method was mo-
tivated by our observation that the noise and reverberations
are disproportionally distributed across the IMF components.
Therefore, different levels of suppression can be applied to
the additive noise and reverberation in each IMF. This leads
to an improved enhancement performance as shown in com-
parison to a related recent approach, based on the measure-
ments by the signal-to-noise ratio (SNR).

1. INTRODUCTION

Room reverberation is one of the main causes of performance
degradation in automatic speech recognition (ASR) systems.
It is commonly modeled as the combination of three parts,
the direct signal, early reflections and the late reflections
[1, 4]. The direct signal is the main signal from the speaker to
the microphone. The early reflections deteriorate the speech
spectrum due to the nonflat frequency response, while late
reflections degrade the quality and intelligibility of speech.
Late reverberation can cause serious problems to ASR per-
formance.

The late reverberations are usually treated as noise whose
variance is estimated and then subtracted from the reverber-
ant speech, for which the spectral subtraction (SS) technique
has been widely used [1]. To estimate the late reverbera-
tions, a method based on an exponential decay function has
been developed in [12]. The main challenge in suppression of
late reverberations is to estimate accurately its variance. The
presence of noise from the acoustical environments make it
more difficult to estimate the power of late reverberations.
Therefore, in this paper, we consider to enhance the noisy
reverberant speech by jointly dealing with the late reverber-
ations and the additive acoustic noise having a Gaussian dis-
tribution and white spectrum.

We propose a new method using EMD based subband
analysis. We use an EMD algorithm to decompose the
noisy reverberant speech into a linear combination of the
so-called intrinsic mode functions (IMFs), ranging from the
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high-frequency to low-frequency bands [2], [3]. Then we se-
lect the IMFs that have higher levels of noise and apply the
EMD based MMSE filter [8] to reduce the additive noise. In
the next step, we use the denoised IMF components and the
remaining IMF components to estimate the power of late re-
verberations. We have observed that the energy of the late re-
verberations is spread over the different IMFs with different
magnitude. For this reason, we perform spectral subtraction
to each IMF according to the energy of the late reverberations
present in the IMF components. We will show the improved
enhancement performance with the proposed method. The
next section presents our proposed approach in detail. Sec-
tion 3 shows the evaluation results, followed by a conclusion
in Section 4.

2. SYSTEM DESCRIPTION

Our proposed dereverberation system is depicted in Figure
1. First, the EMD algorithm [3] is applied to the noisy rever-
berant speech x(¢) to decompose the signal adaptively into C
IMF components Z;(r). In the next step R components are
selected from the C IMF components of Z;(r) for denoising.
Then, an EMD based MMSE filter [8] is applied to each of
the selected IMFs to reduce its noise level. Spectral subtrac-
tion with variable scaling factors is applied to the denoised
IMFs and the remaining IMFs separately. Finally the signal
is reconstructed as §().

2.1 EMD analysis

The EMD algorithm describes the signal details at certain
frequency bands in the form of different IMFs [5]. Each
IMF has a distinct time scale and acts as a basis function
[3]. There are two main conditions that need to be satisfied
by each IMF [3]. First, the difference between the number of
extrema and the number of zero crossings should not exceed
one. Second, the average value for the envelope assigned to
the local maxima and minima is zero. We perform subband
analysis of the noisy reverberant signal x(¢) using the follow-
ing EMD algorithm [3]:

1) Determine all extrema of x().

2) Compute the “envelopes” of the maxima and minima
as Qyin (1) and 0y, (¢) by interpolation.

3) Find the average, rc(t) = (Quin(t) + Qax(2)) /2.

4) Extract the detail Z(¢) = x(7) — rc(2).

5) Repeat steps 1-4 for the residue rc(t) = x(1) — Z(¢).

A sifting process is applied to refine the above procedure
corresponding to the steps 1-4 until Z(¢) can be considered
as zero mean according to some stopping criterion [3]. Once
this is achieved, Z(¢) can be considered as an effective IMF.
Finally the residue r¢(z) is computed and step 5 is applied.
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Figure 1: Block diagram of our proposed denoising and dere-
verberation system.

Upon convergence of the algorithm, x(¢) is decomposed into
a sum of C IMFs and a residue r¢(?),

C
x(1) =Y zj(t)+rc(t) 1)
j=1

where Z;(r) represents the jth IMF component. Typically, C
was set to 15 in our simulations, where different values of C
have also been tested which however give similar results.

2.2 IMF selection

We use the selected IMFs for the denoising in the next sub-
section 2.3. In order to explain the reason behind the selec-
tion of these IMFs, we present an example in which we first
generate the noisy speech signal by adding white Gaussian
noise to the clean speech signal at SNR=4 dB. Then the EMD
algorithm is used to derive the IMF components of the above
generated signal. In Figure 2 the first three high frequency
IMFs and the last three low frequency IMFs of this signal are
shown. From this figure, it can be observed that the noise is
mainly present in the high frequency IMF components. Mo-
tivated from this observation we choose the high frequency
IMF components Zj(t), j = 1,...,R for denoising. In our ex-
periments we used R=10, which is found empirically to be a
suitable number.

2.3 EMD-MMSE

In this step, we perform denoising for the selected high fre-
quency IMF components Z;(r), where j = 1,...,R, using the
MMSE filter [8]. In general speech noise can be estimated
using Boll’s method [10]. The silence periods of the signal
are detected and then the noise power spectrum is estimated
by averaging the power spectra of the noisy signal on the
M first temporal frames corresponding to the silence period.
Here we used the first R IMFs separately in order to estimate
the noise power, following the relation [8]

. 1 M1 ) .
| Bj(k) |>= m Y IBj(ki)*, )
i=0

L..R

where | Bj(k;i) | represents the magnitude spectrum of the
jth IMF component at the discrete frequency k and time
frame i (index used for the silence period), and | B;(k) |*
is the estimated noise power of the jth IMF component at
frequency bin k.

The combined operation of EMD and MMSE filter [7, 9]
is named as EMD-MMSE. Hence each IMF is filtered by the
MMSE filter as follows:

2j(ksn) =Hj(k;n)zj(ksn),  j=1,..,R 3)

)
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where Z;(k;n) and Z;(k; n) are the spectra of the jth estimated
IMF and noisy IMF components respectively, observed at the
discrete frequency k and the time frame n. H;(k;n) can be
defined as follows [7]

_ SNRyip(k;n)

Hi(ksn) = ——priod® )
(ki) 1+ SNR prio (ki)

“

The signal to noise ratio, SNR,,, can be estimated based on
the previous frame of the estimated Z;(k;n — 1) and a local
estimation of SNR;,, given as [7]

SNRprio (k;l’l)
22 (1
Zi(ksn—1)
2
;7 (k)
where o is a weighting factor (chosen empirically to be 0.98

in this work) and SNR;,s; represents the instantaneous SNR,
and can be defined as the local estimation of SNR o,

)
(k)

—a + (1 — o)max(SNRjs (k;1),0)  (5)
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Hence Z;(k;n) with j = 1,...,R, obtained in equation (3) are
the denoised IMF components which are further processed in
the next step in order to remove the late reverberations from
these components.

2.4 Spectral subtraction for the IMFs

It has been observed that the late reverberations lead to
the blurring effect on speech spectrum in the frequency do-
main, resulting in a smoothed spectrum [1]. Therefore,
the power spectrum of the late reverberation components
can be estimated as the smoothed and shifted version of
the power spectrum of the denoised reverberant IMF com-
ponents Z;(k,n),j = 1,...,R and remaining low frequency
components, Zj(k,n),j = R+1,...,C. For simplicity, all
of these components are now represented by Z;(k,n) where
j=1,..,C.

18, (ki) 2 = Yoo (n — p) +[2;(k:n) ™
where [S;, (k;n) |? is the short term power spectrum of the late
reverberations in the jth IMF component, Y is the scaling
factor specifing the relative strength of the late reverberation
components, the symbol * denotes the convolution opera-
tion, @(n) is a smoothing window, and p refers to the rel-
ative delay of the late reverberations. The short-term speech
spectrum can be obtained by using the Hamming window
of length 16 msec with 8 msec overlap for the short-term
Fourier analysis.

To estimate the power spectrum of the original speech,
we can subtract the power spectrum of the late reverbera-
tion components from that of the IMF components Z;, j=
1,...,R. Spectral subtraction can be employed for each se-
lected component as follows [1],

15(ksm)|? =

2 (kim) P — vy (n— p) =12 (kin) .

: 8
&) ®

|2; (ks n)|*max
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Figure 2: The IMF components derived from the noisy speech signal. The top row shows the first three high frequency IMFs

and the bottom row shows the last three low frequency IMFs.

where |§;(k;n)|* represents the power spectrum of the jth
IMF component of the estimated version of the original
speech, € stands for the floor parameter which was set to
be 0.001 in our experiments, corresponding to the maxi-
mum attenuation of 30 dB and ¥; is a scaling factor, dis-
cussed below. The spectral subtraction procedure discussed
above in equation (7) and (8) were also used for all the IMF
components including the remaining low frequency IMFs
Zj, j=R+1,...,C.

2.5 Selection of variable scaling factor y;

We use the variable scaling factor y; for the estimation of
the late reverberations from the IMF components. To show
the motivation for using variable y;, we present an exam-
ple in which we take the IMF components of the reverberant
speech signal (at RT= 200 msec) and the clean speech signal.
We then subtract the IMF components of clean speech signal
from the corresponding IMF components of the reverberant
signal to obtain the distribution of the energy of late reverber-
ations. The spectrograms of the subtracted IMF components
are shown in Figure 3. From this figure, it can be observed
that the late reverberations tend to spread over the different
IMFs with variable energy, i.e. having high energy in the first
few high frequency IMFs and decreases in the lower IMFs.
Motivated by this fact, we propose to use variable scaling
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factors 7; instead of a fixed one (as used in method [1]). We
select high values of 7 for the first few high frequency IMF
components while decreasing them for the lower frequency
components. We have tested different range of values for 7.
The optimized ranges of values of y for each corresponding
IMF component are shown in Figure 4 where reverberation
time (RT) is equal to 200 and 500 msec respectively.

2.6 Signal reconstruction

Finally, the enhanced signal §(¢) can be reconstructed by the
superposition of the processed IMFs, and the residue, given
as follows,

C

s5i)+ Y, §(0) +re() )

j=R+1

§(r) =

M

where §;(¢) is computed as the inverse FFT of §;(k;n) ob-
tained in (8).

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of our proposed
method using simulations. Four clean speech utterances, 2
male and 2 female all sampled at 16 kHz were used. The
simulated room model [6] was used to generate the reverber-
ant signals from the clean speech signals with different RT's,
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Figure 3: The spectrograms of the subtracted IMFs shown in the descending order of frequency patterns with the highest
frequency component on the top left and the lowest frequency component on the bottom right.
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which were then added by white Gaussian noise with SNR
values ranging from -12 dB to 4 dB. The size of the room in
the experiments was 10 x 10 x 10, and the microphone and
speaker were positioned at [3, 8, 5] and [2, 2, 5] respectively
(the unit is meter) [6]. The performance index used in the
evaluations is the SNR [11]. The SNR can be defined as,

T (o(£:))2
s g EEL

where s(;) and §(z;) are the original signal and the enhanced
signal respectively, and T is the length of the signal.

We have performed numerical simulations for RT= 200
and 500 msec respectively, with SNR ranging from -12 dB
to 4 dB for each RT. In total 50 independent random tests
have been conducted for each SNR, and the average results
were calculated. In order to ensure the fair comparison be-
tween our proposed approach and the method in [1], EMD-
MMSE has also been applied as a preprocessing step for the
method in [1]. Figure 5 shows the comparison of the meth-
ods for the signals in terms of SNR obtained for RT=200 and
500 msec respectively, and for different noise levels. From
Figure 5, we can observe that our proposed algorithm offers
improvement over the method in [1] with EMD-MMSE pre-
processing, especially for RT equal to 500 msec, and com-
parable performance is observed for RT equal to 200 msec.

(10)
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Figure 5: Average gain in SNR for RT= 200 msec and 500
msec with different initial noise levels. Results are the aver-
age of 50 random tests.

As compared to the results obtained by [1] without incorpo-
rating EMD-MMSE preprocessing, our proposed method has
shown considerably higher performance improvement.

We performed another set of experiments in which we
evaluate and compare the performance of the proposed ap-
proach and the method in [1] with and without EMD-MMSE
filtering on the basis of different source-microphone dis-
tances. The RT used in this set of experiments for all the
four signals is 500 msec with initial SNR= -4 dB. Average
results for all the speech signals based on 50 random tests,
are depicted in Figure 6. We can observe that as the distance
between the source and the microphone decreases the aver-
age performance of both algorithms increases. In addition,
it should be noted that our proposed method performs better
for larger source-microphone distances.

4. CONCLUSION

A novel approach has been presented for speech denoising
and dereverberation, based on the EMD decomposition of the
noisy reverberant speech. EMD based MMSE and spectral
subtraction have been used for processing the IMF compo-
nents separately. It has been observed that both the additive
noise and the late reverberations are spread over the differ-
ent IMF components in varying magnitudes. As shown in
our experiments, performing spectral subtraction for each of
these components offers better denoising and dereverberation
performance as compared with a related method that directly
uses the noisy reverberant speech.
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level equal to -4 dB. Results are the average of 50 random
tests.
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