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ABSTRACT

Correcting colour imbalances between stereo views is a ma-
jor task in the production of high quality 3D stereoscopic
content. This paper addresses extreme cases of colour imbal-
ance where the intensity range of one view exceeds the valid
range causing image burnout in the degraded view. We pro-
pose a comprehensive framework for restoring the degraded
view by using the other well-exposed view to interpolate both
colour and texture information. The texture copy is done in
the gradient domain by solving the Poisson equation and us-
ing the disparity map to guide the interpolation. We also pro-
pose a method of detecting burnout inspired by a technique
for detecting poorly exposed regions in image stills. Our re-
sults show that it is possible to get a good restoration in stereo
pairs with a significant degree of image burnout.

1. INTRODUCTION

Inconsistencies in the camera configuration of stereo rigs is
the primary cause of visual discomfort when viewing stereo-
3D video. Colour imbalances between stereo views are one
of the most common problems associated with inconsistent
camera configurations. These imbalances can cause one view
for example to appear brighter or more washed out than the
other. Typical causes of imbalances are differences in cam-
era sensor characteristics as well as the choice of mirror rigs'.
Colour balancing algorithms attempt to match the colour dis-
tributions of two images by either employing a linear map-
ping of the lower order moments of the colour histogram
(typically mean and covariance) [13, 11] or adopting a non-
linear histogram matching based approach [9, 12]. This pa-
per deals with extreme cases of colour imbalances, where it is
possible for the intensity range of the scene to exceed the dy-
namic range of the camera (Fig 1). Not only does one view
appear brighter than the other, burnout occurs in the image
highlights resulting in a loss of texture detail.

1.1 Related Work

Restoring image burnout in stereo pairs shares many simi-
larities with the problem of estimating a well-exposed image
from a series of bracketed-exposure stills of a static scene.
The well-exposed image can be composed by estimating an
intermediate high dynamic range (HDR) image (e.g. [5]) and
applying a tone-mapping operator (e.g. [6]) to fit the HDR
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Figure 1: This stereo pair, taken from the Sigmedia Stereo
Database [4], consists of one well-exposed view (right) and an over-
exposed view (left) in which image burnout is present. Texture has
been destroyed in the reflection on the sphere surface and in the
sky behind the sphere. Our algorithms reconstructs the gradients
inside the burnout regions by copying them from the well-exposed
view and matches the colour distribution of the over-exposed view
to well-exposed view.

image to the range of the display device. An alternative di-
rect approach [8] is to create the image by fusing together the
well-exposed regions of each still. Similarly, the goal here is
to restore the degraded view by fusing it with the relevant
detail in the reference view. However, the viewpoints of the
cameras are different and so the views need to be registered
in order for fusion to take place. Since the intensity range in
the reference view better fits the allowed range, it is also de-
sirable to match the colour distribution of the degraded view
to that of the reference view.

A previous approach to the burnout problem was outlined
in [4] which performed the texture transfer by copying the
band-pass wavelet coefficients from the DT-CWT decompo-
sitions [7] of the degraded and reference views. The algo-
rithm gave good results in examples where there were large
non-elongated regions of burnout such as the example of the
sphere shown in Fig. 1. However, since up to 9 levels of
DTCWT band-pass coefficients were required to reconstruct
the texture accurately, it did not perform well on elongated or
small regions of burnout. Furthermore, it induced a spatially
varying colour distortion caused by discontinuities in band-
pass coefficients of the restored view. This acted to introduce
a high frequency flicker to the restored sequence.

1.2 A New Approach

In this paper, we overcome the limitations of [4] by perform-
ing the texture copying in the gradient domain rather than the
wavelet domain. By applying the Poisson partial differential
equation (PDE) with Dirichlet boundary conditions it is pos-
sible to reconstruct the gradient field in the burnout region
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from the gradient field of the reference view in such away
that minimises the visual discontinuity across the bound-
aries of the burnout regions. This technique is a well es-
tablished method in the community for seamless merging of
patches from different images [10, 1]. We also introduce a
new method for the detection of burnout regions which is
less reliant on morphological operations to get a complete
mask than the method proposed in [4]. The final contribution
presented in this work is a refined strategy for disparity esti-
mation that gives more robust disparity estimates inside the
burnout regions which allows for more robust texture transfer
from the reference view.

The remaining sections of the paper are organised as fol-
lows. Section 2 introduces the restoration algorithm and de-
scribes its novel features. This is followed by the results sec-
tion which shows some examples of restored frames and dis-
cusses the challenges of designing a practical algorithm to
faithfully restore stereo-3D video sequences.

2. RESTORATION FRAMEWORK

The degraded view contains regions of image burnout and
also contains a colour distortion in the non-burnout regions.
The model of the the degraded view G(x) is described in
terms of the uncorrupted view /(x) as

G(x) = (1 - a(x))f(I(x)) + 0t(x)Crep- (1

In this equation, the a(x) map specifies a binary mask that
describes the degree of burnout in each region. In the burnout
regions, where the value of a(x) = 1, the degraded image
texture is replaced with a replacement colour Cy, which is
assumed to be white in colour. f(I(x)) describes the colour
distortion of the hidden uncorrupted image.

The interpolation of burnout regions is guided by a
stereo-view disparity model which states that

1(x) = Ler(x +d(x)) +e(x) @)

where d(x) is the disparity estimate that maps pixels, x, in
the degraded view to pixels, x + d(x), in the reference view
and e(x) represents the realisation of a random noise pro-
cess. Consequently, a full disparity estimate is required to
register the reference view. To restore the degraded view,
it is necessary to correct the colour distortions in the non-
burnout regions as well as to reconstruct the burnout regions.
The restoration is described by

Les (%) = (1= a(x))f~H(G(x)) + ot (¥)het(x +d(x)) (3)

where f~!(.) describes the colour correction operation.

However, copying a region from the reference into the
burnout region in image space will cause discontinuities
across the boundary of the burnout regions. Our solution is
based the gradient domain fusion approach [10, 1] used for
seamless cloning of image patches. The remainder of this
section describes our solutions to each of the problems of
colour-correction (i.e. finding f~!(G(x))), burnout region
detection (finding o/(x)), disparity estimation as well as de-
scribing the gradient domain data interpolation in the burnout
regions.

2.1 Burnout Detection

Image burnout results in pixels that have a bright white
colour. Hence, in the HSV colour space the burnout pixels

have high value and low saturation components. As burnout
regions also contain little texture they also exhibit low spa-
tial contrast. In [8], Mertens et al. propose a method for
measuring the exposure quality based on these observations
that gives high weights to regions that are well-exposed and
low weights to under or over-exposed regions. It proposes
separate quality metrics based on the luminance, saturation
and contrast values at each pixel and creates a joint exposure
quality weight based on a geometric average of the individual
metrics.

In this paper, we propose a method for detecting a bi-
nary burnout mask based on these metrics. This is achieved
by estimating an intermediate burnout confidence measure
based on the saturation and luminance metrics proposed in
[8]. These metrics are calculated on the degraded view G(x)
defined in (1). The confidence measure at a given pixel,
o(x), is given by

o(x) = (1-5)*)(1

where S(x) and L(x) are the exposure quality metrics based
on saturation and luminance respectively and @, and @; are
a set of tuning parameters.

The range of both S(x) and L(x) is between O and 1
where a value close to 0 indicates that the pixel is more likely
to belong to a burnout region and is close to 1 if the pixel
comes from a well exposed region of the image. The tun-
ing parameters @, and @; adjust the sensitivity of @(x) to
S(x) and L(x) respectively. For example, as the value of @,
decreases, for a given S(x) the confidence measure w(x) de-
creases. Thus, from (4) @(x) will have a value approaching
1 in burnout regions. The expressions for S(x) and L(x) fol-
low closely metrics outlined in [8] and are given by

S(x) = max (G,(x), Gg(x), Gp(x))
—min(G,(x), G,4(x), Gy(x)) &)

_ (Gi(x)-05)*
L(X) _ H {eXP
k={rg.b} 1

2x0.32

where G,(x),G,(x),Gp(x) are red green and blue intensities
(RGB) of the degraded view and where G (x) corresponds to
each of the RGB channels in turn. All colour intensities are
scaled between 0 and 1. The most significant difference from
[8] is that in our luminance metric L(x) only applies to the
top half of the intensity range (i.e. L(x) = 1 if the intensities
in each channel are less than 0.5) since we are interested in
detecting over-exposed rather than under-exposed regions of
the stereo frame. The burnout mask (x) is estimated by
applying a threshold, @y, to the value of @(x) such that

—L(x)) )

Gi(x) >0.5

6
Gr(x) < 0.5 ©

(N

(o) = {1 o(x)>0.5

0 w(x)<0.5.

Effectively, the detection rate for o is governed by the choice
of the tuning parameters @, and ;. Our assessments show
that values of @; = 1 and @; = 0.5 give good detection rates.
Since the PDE-based interpolation will only affect the re-
gions where a(x) = 1, a(x) is dilated slightly to reduce the
missed detection rate around the borders of the burnout re-
gion. As long as accurate disparity estimates are possible,
false alarms do not adversely affect the quality of the result.
Examples of the saturation masks calculated using this tech-
nique are shown in Fig. 3.
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2.2 Correcting Colour Distortions

The choice of colour correction technique is guided by the
nature of the distortion which in turn is dictated by the choice
of camera rig. For side-by-side rigs colour distortions tend to
be spatially invariant or global in nature. In mirror rigs, addi-
tional spatially varying colour distortions are added which
requires that separate corrections are performed on local
patches. Disparity estimation is necessary to find the cor-
responding patches in each view.

The examples of burnout which were used to test the
proposed algorithm are contained in the Sigmedia Stereo
Database” and were captured using a side-by-side stereo rig.
This implies a spatially invariant colour distortion exists be-
tween the views. We use the linear colour transfer algorithm
proposed by Pitié et al. [11] to match the colour distribution
of degraded view to the reference view. As stereo colour dis-
tortions tend to be manifested as differences in contrast and
brightness levels corresponding to variations in the 1% and
274 order moments of the colour distributions, a linear dis-
tortion model is appropriate. In theory the colour distortion
should be estimated only on the regions of the image that are
not burnout regions. This would require a disparity estimate
to propagate the burnout mask o/(x) to the reference view to
exclude the corresponding burnout regions. However, from
a visual inspection it was observed that estimating the colour
distortion on the entire frame did not noticeably reduce the
quality of the colour correction. This avoids the need to prop-
agate a(x).

2.3 Disparity Estimation

Disparity estimation between images at different exposures
is challenging for most estimation algorithms since changes
in illumination tend to adversely affect the match of features.
This is further compounded when burnout is present, since
the texture content in the over-exposed and reference views
is different. As the disparity estimator will then attempt to
match texture in the reference view that simply does not ex-
ist in the degraded view, the estimation will fail in an unpre-
dictable manner (See Fig. 2).

Colour correcting the degraded view (See Section 2.2)
can resolve the illumination issue, however the problem of
disparity estimation inside the burnout region remains. Our
solution is to distort the colour distribution of the reference
view to the degraded view by applying the colour matching
algorithm described in [11] and clip the intensity of the ref-
erence view where it exceeds the permissible range. This
results in burnout in the reference view that is similar to
the burnout regions in the degraded view (See Fig. 2) and
improves the performance of disparity estimation inside the
burnout region.

The disparity estimation process itself consists of two
stages. An initial disparity estimate is found using the simple
tree method of Bleyer and Gelautz [2]. The estimate is fur-
ther refined by applying the gradient based motion estimation
algorithm of Brox et al. [3]. The idea is to smooth out quan-
tisation artefacts of the simple tree method and gives more
precisely defined disparity discontinuities around the bound-
ary of foreground objects.

waw.sigmedia.tv/stereovideodatabase

Figure 2: An illustration of the effect of burnout on disparity es-
timation robustness. The top row shows a portion of the estimated
disparity (right) between the reference view (left) and the degraded
frame shown on the left of Fig. 1. In the disparity map bright
colours represent objects that are closer to the camera. In the dis-
parity estimate (top right) there are distortions in the surface of the
sphere as the disparity estimator attempts to match the texture in
the reference view to the non-existent texture in the burnout regions
of the degraded view. By artificially saturating the reference view
(bottom left), the effects of these artefacts can be mitigated (bottom
right).

2.4 Burnout Region Interpolation

The burnout regions are interpolated by reconstructing the
gradient field of the restored image VI.s(x) inside the
burnout regions (i.e. for all x where a(x) = 1). The optimum
gradient field is the gradient field closest to the gradient field
of the disparity estimate VI.s(x + d(x)) in the least squares
sense subject to the constraint that at all pixels outside the
burnout region (0¢(x) = 0) Les(x) = f~(G(x)), the colour
corrected degraded view. This is equivalent to the solution of
the discretised Poisson PDE with Dirichlet boundary condi-
tions. The form of the equation for burnout detection is

Ales(x) = ALes(x + d (%)) ¥

where A describes the discrete Laplacian operator. Perez et
al. [10] describe in detail how a linear system of equations
are constructed to solve the PDE and the details are not re-
produced here. The system of equations is solved using Ja-
cobi optimisation with a coarse-to-fine multigrid of 4 levels.
An independent reconstruction is estimated for each of the
colour channels.

Special consideration is paid to regions of the image
around the border that are occluded in the reference view
and results in data interpolation failure if burnout exists in
these regions. To overcome this issue, a 2" interpolation
pass is performed in the burnout patches that exist along
these borders. An estimate of the affected regions can be
made by finding all the pixels in the degraded view whose
disparity vectors d point outside the valid bounds of the ref-
erence view. The intensities of the burnout pixels along these
borders are computed by solving the Poisson PDE with de-
scribed by

AlLes(x) = AG(%). ©)

In other words, the gradient field of the restored view is
matched to the gradient field of the degraded view. Although
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Figure 3: This figure shows a restoration example from 3 different sequences. From left, the 1% and 2" column shows the degraded
and reference views. The 3™ column shows the estimated burnout mask o(x) for the degraded view (burnout is marked white). The final

restoration is shown in the last column.

Figure 4: A demonstration of the improved performance of the
proposed algorithm (left) over [4] (right). The arrows in the right
image right point to a bright halo around the hand caused by a dis-
continuity artefact introduced by the wavelet interpolation of [4].
This halo is more apparent when the restored sequence is played
back as the artefact changes from frame to frame. There is no halo
present when the proposed algorithm is applied (left). Note also
how the proposed algorithm does not smear the finger at the top of
the frame. This is due to the improved robustness of the disparity
estimation employed here.

the missing texture in the burnout region is not recovered, the
distortion in these regions is reduced.

3. RESULTS

Figure 3 shows 3 stereo pairs containing burnout restored us-
ing the proposed algorithm. It shows both the burnout de-
tection matte and fully restored views for each pair. In the
example on the first row, the texture on the surface of front
of the building as well as the sky in the background is well
reconstructed in the restored view (far right). The second
example shows the restoration on the sphere example, and
shows that not only are the reflections on the surface of the

Figure 5: This figure shows a closeup of the restored views from
two consecutive frames of the sequence shown on the top row of
Fig 3. An artefact is clearly visible in the right image along the
horizontal edge above the column. This causes an popping effect
when the restored sequence is played back.

sphere restored but the algorithm can also restore the fring-
ing artefacts on the tree branches located behind the sphere.
The 3" example shows a pair taken from a sequence that
is artificially brightened to induce burnout. The burnout re-
gions in this example are elongated and the proposed method
out-performs the method proposed in [4] (See Fig. 4).

Ultimately, restoring burnout is intended to improve the
visual experience when viewing a stereo-video on a 3D dis-
play. An example of the visual impact of the restoration
on one frame is shown in Fig. 6 which shows an anaglyph
rendering of a stereo pair before and after restoration. The
anaglyph of the degraded pair has a noticeable glare in the
burnout regions compared to the restored anaglyph and re-
sults in greater eye strain when viewed for a significant pe-
riod of time.

Temporal consistency is also crucial to the fidelity of the
restoration. To test the temporal consistency of the restora-
tion, we have restored 4 sequences from the Sigmedia Stereo
Database’. The proposed gradient domain interpolation ap-
proach avoids the spatially varying colour distortions present

3The restored sequences can be viewed at www.sigmedia.tv/
research/Eusipco2011
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Figure 6: A rendered anaglyph of the stereo pair shown in the 2" row of Fig. 3 both before (left) and after (right) restoration.
The burnout causes a glare in the left view when viewed with red/cyan anaglyph glasses. The restoration reduces this glare.

(Note: This is best viewed in the electronic form.)

in [4]. Although the many of the restored frames are tempo-
rally consistent, there are some examples that are temporally
inconsistent (See Fig. 5). The most visible instances of this
are temporally unstable edges and noise like distortions in
low texture regions. These failures occur due to temporal in-
consistency in the disparity estimates. Therefore, a temporal
smoothness constraint should be added to the disparity es-
timation process to boost temporal consistency. This is the
subject of future research.

4. FINAL REMARKS

This paper has proposed a new algorithm to resolve the prob-
lem of image burnout in stereo pairs by interpolating the
missing texture from the other well-exposed stereo view. A
gradient domain interpolation based on solving the Poisson
PDE is used to fill the burnout regions while avoiding visi-
ble seams across the region boundaries. The paper also pro-
posed a new burnout detection method based on exposure-
quality metrics. These advances, along with more robust
disparity estimation, ensure that the proposed method out-
performs the algorithm of [4], especially for smaller more-
elongated burnout regions. Future work will investigate the
gain in restoration temporal consistency by applying a tem-
poral smoothness constraint to the disparity energy minimi-
sation. We will also consider a joint iterative approach for
disparity estimation and data interpolation.
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