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ABSTRACT
Interference alignment (IA) can use channel state infor-

mation (CSI) to precode, align, and reduce the dimension
of interference at each of the receivers, enabling systems to
achieve their maximum multiplexing gain. CSI, estimated
at the receivers, can be shared with the transmitters by lim-
ited feedback. The number of channels to be shared grows
with the square of the number of users creating too much
overhead in conventional feedback methods. This paper pro-
poses Grassmannian differential feedback to take advantage
of temporal correlation in the channel and reduce overhead.
Grassmannian differential feedback uses two manifold tools,
tangent spaces and geodesic paths, to track the evolution of
CSI on the manifold. Simulation results show that the pro-
posed feedback strategy allows IA to perform well over a
wide range of Doppler spreads, and to approach perfect CSI
performance in slowly varying channels.

1. INTRODUCTION

Interference alignment (IA) is a linear precoding technique
for the interference channel [1]. IA reduces the dimension
of interference at each of the receivers, allowing systems to
achieve maximum multiplexing gain. IA precoders can be
found using various algorithms [2, 3], at the expense of re-
quiring channel state information (CSI) for all interference
channels in the network. Feedback is a flexible method to
obtain the CSI required for IA. Limited feedback, where CSI
is quantized, is a reasonable approach for low overhead feed-
back [4].

Prior work has applied both limited and analog feedback
to IA [5, 6]. Unfortunately, the required CSI scales with the
square of the number of users incurring a high overhead. Par-
titioning users into small interference alignment groups is
one approach to reduce overhead [7]. Partitioning reduces
the number of channels that must be fed back, but does not
directly address the shortcomings of existing feedback strate-
gies. The codebooks required for limited feedback, for exam-
ple, still become prohibitively large at high SNR [5]. While
analog feedback avoids codebook scaling, it suffers from the
fact that extra feedback symbols provide only marginal im-
provements to CSI accuracy [6]. Both [5, 6] neglect tempo-
ral correlation which can be exploited by differential feed-
back [8] and predictive vector quantization [9].

In this paper we propose a limited feedback strategy for
IA based on Grassmannian differential feedback. The pro-
posed strategy tracks the slow evolution of the normalized
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and rotationally invariant channel impulse responses on the
Grassmannian manifold. At each feedback update, a quan-
tized tangent vector relating consecutive channel realizations
is used at the transmitted reconstruct the channel. Grass-
mannian manifold tools, such as the tangent vector, were
previously used in a predictive quantization strategy for the
multiple-input single-output (MISO) broadcast channel [9].
In this paper, no prediction is performed and differential
feedback is used in the new context of single-input single-
output (SISO) interference channels. In a SISO IA system,
alignment can be done by coding over frequency extensions
in which case the wideband channel responses are the CSI
to be quantized. New adaptive tangent codebooks are con-
structed to make use of the geometry of the CSI and dynam-
ics of the system. The proposed algorithm outperforms mem-
oryless quantization and competitive feedback strategies for
temporally correlated channels [9]. Simulation results show
that IA with the proposed feedback strategy performs well
for practical SNRs with a limited number of feedback bits.

Throughout this paper we use the following notation: A
is a matrix; a is a vector; and a is a scalar; A∗ and a∗ de-
note the conjugate transpose of A and a respectively; A ◦B
is the Hadamard product ; ∥A∥F is the Frobenius norm of
A and trace(A) is its trace; ∥a∥ is the 2-norm of a; |a| is
the absolute value of a; IN is the N × N identity matrix;
0N is the N-dimensional zero vector; FN is the N -point dis-
crete Fourier transform (DFT); diag(a) is the diagonal ma-
trix obtained by putting the elements of a on its diagonal;
CN (a,A) is a complex Gaussian random vector with mean
a and covariance matrix A. Expectation is denoted by E [.].

2. SYSTEM MODEL

Consider a frequency selective SISO interference channel
with K communicating user pairs, as shown in Fig. 1.
Each user k communicates desired data to its paired re-
ceiver k and also interferes with all other receivers ℓ ̸=
k. The wideband channel between transmitter ℓ and re-
ceiver k is modeled by the L-tap channel impulse response
vector hk,ℓ = [hk,ℓ[0], hk,ℓ[1], . . . , hk,ℓ[L− 1]] ∀k, ℓ ∈
{1, . . . ,K}, which is assumed to be known perfectly to the
receiver k. The elements of the channel impulse response
are drawn independently across k and ℓ from a continu-
ous distribution and have covariance matrix E

[
hk,ℓh

∗
k,ℓ

]
=

Rhk,ℓ
, ∀k, ℓ ∈ {1, . . . ,K}, such that trace

(
Rhk,ℓ

)
= 1.

Using orthogonal frequency division multiplexing
(OFDM), the observed wideband channels are transformed
into a set of Nsc non-interfering narrowband subcarriers.
Stacking each received OFDM symbol in a vector, the
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Figure 1: K-User SISO interference channel model

matrix input-output relationship is

yk[t] = Hk,k[t]xk[t] +
∑
ℓ ̸=k

Hk,ℓ[t]xℓ[t] + vk[t]. (1)

where xk[t] is the OFDM symbol sent by user
k at time t with the average power constraint
E
[
∥xk[t]∥2

]
= NscP , the Nsc × Nsc matrix

Hk,ℓ[t] = diag
(
FNsc

[
h∗
k,ℓ[t], 0Nsc−L

]∗)
represents

the channel frequency response between transmitter ℓ and
receiver k at time t, and vk[t] is the i.i.d. CN (0, σ2

nINsc)
thermal noise observed by user k. The system model
assumes perfect time and frequency synchronization, and a
cyclic prefix longer than all channel responses.

The channels seen by the t-th OFDM symbol are as-
sumed to remain constant. The channels over consecutive
OFDM symbols, however, are temporally correlated such
that E [|hk,ℓ[t+ 1]hk,ℓ[t]|] = η ≤ 1.

3. INTERFERENCE ALIGNMENT IN FREQUENCY

In this section we review the concept of IA over frequency
extensions and summarize the effect of imperfect CSI on the
performance of IA.

3.1 SISO IA via Frequency Extensions

IA for the SISO interference channel can achieve the max-
imum degrees of freedom when coding over infinite chan-
nel extensions [1]. Using IA over Nsc frequency extensions,
each transmitter k sends dk < Nsc symbols along the pre-
coding vectors fmk [t]. As a result the transmitted symbol is

xk[t] =

dk∑
m=1

fmk [t]xm
k [t], (2)

where xm
k [t] are the symbols transmitted by user k at time

t. To satisfy the power constraint, we set ∥fmk [t]∥2 = 1,
and E

[
xm
k [t]2

]
= NscP/dk, such that the total power in

each Nsc subcarriers is NscP . The transmit directions fmk [t]
are calculated such that the interference from K − 1 users is
aligned at all receivers, leaving interference free dimensions
for the desired signal.

In this section, we restrict our attention to IA with a zero-
forcing receiver. At the output of the linear receiver, the re-
ceived signal is

wm
k [t]∗yk[t] =wm

k [t]∗Hk,k[t]f
m
k [t]xm

k [t]

+
∑

(i,ℓ) ̸=(k,m)

wm
k [t]∗Hk,i[t]f

ℓ
i [t]x

ℓ
i [t]

+wm
k [t]∗vk[t],

(3)

for m ∈ {1, . . . , dk} and k ∈ {1, . . . ,K}, where
∥wm

k [t]∥2 = 1. With a linear receiver, the conditions for
perfect IA can be restated as

wm
k [t]∗Hk,i[t]f

ℓ
k[t] = 0, (i, ℓ) ̸= (k,m) (4)

|wm
k [t]∗Hk,k[t]f

m
k [t]| ≥ c > 0, ∀k,m (5)

where alignment is achieved by (4), and (5) ensures the de-
codability of the dk desired streams.

The achievability proof in [1] showed that if fading is in-
dependent on all subcarriers, then the vectors f ℓk[t] can be
found to satisfy (4) and (5), if dk’s are chosen as in [1].
Fortunately, [5] has claimed that fading on each subcarrier
need not be independent provided that the channel impulse
response is long enough.

3.2 The Effect of Imperfect CSI Feedback
With imperfect or limited CSI feedback, condition (4) is not
satisfied, resulting in residual interference. As the trans-
mit power increases, so does the leakage interference power,
which saturates the sum rate at high SNR.

In [6], it is shown that if imperfect CSI is used to calculate
the IA precoders and combiners, f̂mk [t] and ŵm

k [t], the mean
loss in sum rate is upper bounded by

∆Rsum ≤
∑
k,m

1

Nsc
log2

1 +
EH

[
I1
k,m + I2

k,m

]
σ2

 , (6)

where I1
i,m[t] =

∑
ℓ ̸=m

NscP
dk

∣∣∣ŵm
k [t]∗Hk,k[t]̂f

ℓ
k[t]

∣∣∣2, and

I2
i,m[t] =

∑
i ̸=k

di∑
ℓ=1

NscP
di

∣∣∣ŵm
k [t]∗Hk,i[t]̂f

ℓ
i [t]

∣∣∣2 are the inter-

stream and inter-user interference respectively. The objec-
tive of the feedback algorithm then becomes minimizing the
total leakage interference by improving effective CSI accu-
racy. Using the result from [5], the individual interference
terms can be upper bounded as∣∣∣ŵm

k [t]∗Hk,i[t]̂f
ℓ
i [t]
∣∣∣2 ≤

∥ŵm
k [t] ◦ f̂ ℓi [t]∥2∥hk,i[t]∥2

(
1−

∣∣∣∣∣ hk,i[t]
∗ĥk,i[t]

∥hk,i[t]∥∥ĥk,i[t]∥

∣∣∣∣∣
2)

.

(7)

From (7) we see that leakage interference is directly related
to the angle between the normalized channel impulse re-

sponse, hk,i[t]
∥hk,i[t]∥ , and its quantized version ĥk,i[t]

∥ĥk,i[t]∥
. As a

result, to limit performance degradation an efficient feedback
strategy must attempt to minimize the angle between the ac-
tual and quantized channels.
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4. GRASSMANNIAN DIFFERENTIAL FEEDBACK

In this section we show that the CSI required for IA evolves
on the Grassmannian manifold and present the proposed dif-
ferential feedback algorithm. We also summarize the main
design parameters of our system.

4.1 Motivation and Setup
As shown in (7), the performance of IA with imperfect CSI
is tightly related to the angle between the normalized chan-
nel and its quantized version. Defining gk,i[t] , hk,i[t]

∥hk,i[t]∥

and ĝk,i[t] , ĥk,i[t]

∥ĥk,i[t]∥
, we see that only knowledge of the

normalized channels gk,i[t] is necessary for IA. Further, if
a channel is scaled and rotated by a constant, α ∈ C ,
the subspaces spanned by Hk,i[t]f

m
i [t] do not change since

diag (FNscαhk,i[t]) f
m
i [t] = αdiag (FNschk,i[t]) f

m
i [t]. As

a result, the CSI needed for IA with frequency extensions
evolves on the manifold of L-dimensional unit norm, rota-
tionally invariant vectors otherwise known as the Grassman-
nian manifold, Gn,1. From (7), the interference power is
directly related to the chordal distance between two points
on the manifold [10]. Defining the chordal distance as

d(gk,i[t], ĝk,i[t]) =
√
1− |gk,i[t]∗ĝk,i[t]|2 allows rewriting

the right hand side of (7) as

∥ŵm
k [t] ◦ f̂ ℓi [t]∥2 ∥hk,i[t]∥2d(gk,i[t], ĝk,i[t])

2. (8)

The dependence of sum rate loss on chordal distance moti-
vated the use of Grassmannian quantization [4, 5]. Memo-
ryless quantization, however, is inefficient since it requires
large codebook sizes, and thus high feedback rates, to
achieve the required CSI resolution. We propose to exploit
slow channel variations to reduce feedback and improve the
accuracy of quantized CSI.

4.2 Differential Feedback Framework
The proposed algorithm encodes CSI increments using a tan-
gent vector which defines the geodesic path between con-
secutive channel realizations. Our feedback framework uses
tools presented in [10], which were simplified and first used
for MISO broadcast channel feedback in [9].

We consider the slowly varying normalized channel vec-
tors gk,i[t] ∀t ≥ 0 that are to be separately quantized.
Though gk,i ∀k, i may be quantized jointly, in this paper
we consider separate quantization. Therefore, we restrict
our attention to one of the channels and drop the user sub-
scripts. The smooth structure of the manifold allows us to
relate consecutive channel realizations via a tangent vector
defined as [10]

e[t] = tan−1

(
d[t]

ρ[t]

)
g[t]/ρ[t]− g[t− 1]

d[t]/ρ[t]
, (9)

where ρ[t] = g[t − 1]∗g[t] and d[t] =

√
1− |ρ[t]|2. The

tangent can be viewed as a length preserving unwrapping
of the shortest path between the two channel realizations
onto the tangent space at g[t − 1]. This means ∥e[t]∥ =

tan−1
(

d[t]
ρ[t]

)
= θ[t] where θ[t] is the arc length between

the two channel vectors. The shortest path between the two

channels, known as the geodesic path on the manifold, is

G(g[t− 1], e[t], ℓ) =g[t− 1]cos (∥e[t]∥ℓ)

+
e[t]

∥e[t]∥
sin (∥e[t]∥ℓ) .

(10)

It is possible to verify that G(g[t − 1], e[t], 0) = g[t − 1],
G(g[t − 1], e[t], 1) = g[t] and that ∥G(g[t − 1], e[t], ℓ)∥ =
1, ∀ℓ since e[t] is orthogonal to the base vector g[t − 1].
Therefore, the tangent vector and geodesic path can be used
to build a feedback framework to track the evolution of CSI
on the Grassmann manifold. Given the previous channel re-
alization, the transmitter can reconstruct the current channel
once the tangent vector is fedback by applying (10). Using
predictive vector quantization, feeding back the tangent vec-
tor was shown in [9] to provide good sum-rate performance
for the narrow band MISO broadcast channel.

Algorithm 1 Receiver
1: Input: ĝ[t− 1]
2: for all t = 1, 2, . . . do
3: Estimate the channel g[t]
4: Calculate tangent between ĝ[t− 1] and g[t] using (9)
5: Quantize and feedback quantized tangent vector ê[t]
6: Reconstruct the channel ĝ[t] = G(ĝ[t− 1], ê[t], 1)
7: end for

The pseudo code used to encode the channel evolution
over time is given in Algorithm 1 and 2. At each new chan-
nel realization, the receiver estimates the normalized L-tap
channel g[t]. Perfect channel estimation is assumed here
to decouple the quantization error from the estimation error.
Given the current observation, and the output of the Grass-
mannian feedback algorithm in the previous channel real-
ization, ĝ[t − 1], the receiver calculates the tangent vector,
e[t], from ĝ[t − 1] to g[t]. The receiver then quantizes the
tangent vector to produce a quantized tangent, ê[t]. The de-
tails of the quantization method are given in depth in Section
4.3. This quantized tangent is then fedback to the transmit-
ter over a delay and error free feedback link. Equipped with
the previous quantized channel ĝ[t−1] and the quantized er-
ror vector ê[t], both transmitter and receiver reconstruct the
quantized channel ĝ[t], which will be used as the base point
in the next iteration. The transmitter then uses the quantized
CSI, ĝk,i[t], ∀k, i to do IA, i.e. this algorithm runs in parallel
for all channels in the network.

Algorithm 2 Transmitter
1: Input: ĝ[t− 1]
2: for all t = 1, 2, . . . do
3: Receive the feedback tangent vector ê[t]
4: Reconstruct the channel ĝ[t] = G(ĝ[t− 1], ê[t], 1)
5: end for
6: Output: ĝ[t]

4.3 Design Considerations
Having described the Grassmannian differential feedback
framework, we present the adaptive quantization codebooks
used by our algorithm and discuss its proper initialization.
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Initialization: Synchronous operation of the Grassman-
nian differential feedback algorithm is ensured by the fact
that at each iteration, both transmitter and receiver calculate a
quantized channel vector based on the same commonly avail-
able knowledge. For this to hold, however, both transmitter
and receiver need a common initial vector, ĝ(0), as input to
the algorithm, otherwise the time series observed by trans-
mitter and receiver will not be coupled. This vector can be
based on a memoryless quantization of the channel [4] or ini-
tialized with a common random vector.

Tangent Magnitude Quantization: The tangent vector
calculated in (9) is decomposed naturally into a tangent mag-
nitude and a unit norm tangent direction. In this paper, the
magnitude and direction are quantized separately as it can
be shown in simulation that there is little to gain from joint
quantization.

The problem of quantizing the tangent magnitude is that
of quantizing a positive scalar and is done as follows

êmag = argmin
ei∈Cmag

|∥e[t]∥ − ei| , (11)

where Cmag is the magnitude quantization codebook. The in-
dex of the minimizer is then sent to the transmitter via a delay
and error free link which requires log2(|Cmag|) bits. Find-
ing the exact probability density function of the magnitudes
is intractable, and thus we do not seek to find an optimal
quantization codebook. One solution is to uniformly quan-
tize a range of magnitudes, ∥e[t]∥ ∈ [0, 1], which is subopti-
mal. For example, [9] has observed from simulations that in
highly correlated channels, where such feedback strategies
are most useful, quantization error in the magnitude domi-
nates the error in tangent direction.

Motivated by the correlation between magnitudes in con-
secutive iterations, we propose to adapt the quantization
range to the dynamics of the system. Given the magni-
tude of a tangent at time t, ∥ê[t]∥, the codebook at time
t+ 1 becomes a uniform quantization codebook in the range
[α∥ê[t]∥,min {β∥ê[t]∥, π/2}], where 0 < α < 1 < β are
fixed parameters of the codebook. This allows the feedback
algorithm to accurately track the statistics of the magnitude
and quantize the current range of magnitudes with higher res-
olution. In static channels, this allows our approach to con-
verge to perfect CSI.

Tangent Direction Quantization: The problem of quan-
tizing the tangent direction vector is that of quantizing a unit
norm vector which lies in the tangent space orthogonal to
the base vector ĝ[t − 1]. General vector quantization code-
books, such as a random vector codebook, can not be used
to quantize the tangent directly for several reasons. First,
traditional codebooks quantize the full L dimensional space
whereas the tangent vector is of lower dimension. Further,
traditional codebooks do not enforce the structural constraint
that requires the tangent direction codewords to be orthogo-
nal to the base vector ĝ[t]. With such a non-orthogonal tan-
gent vector, the geodesic path is undefined and the output of
G(ĝ[t−1], ê[t], ℓ) does not lie on the manifold. Finally, note
that the tangent space changes for each base vector, which
necessitates an adaptive codebook.

To respect the varying tangent space geometry and or-
thogonality constraints, we propose to use a canonical gen-
erating codebook to be adapted at each iteration. The code-
book design provided allows perfectly projecting a canonical

codebook onto the tangent plane at each iteration. This en-
sures that the output of the Grassmannian differential feed-
back algorithm remains on the manifold. We define a canon-
ical tangent codebook as Cgen which has |Cgen| = N unit
norm vector entries x1, . . . ,xN . This vector codebook can
be any L dimensional vector codebook whose entries span
the full L-dimensional space, such as the random codebook.
At each iteration we form a codebook, Cdir, with entries or-
thogonal to the base vector by using a projection operation.

Definition 1 The normalized projection matrix function

P(x,xb) =
IL − xbx

∗
b√

1− (x∗xb)2
x,

computes the closest unit vector to x that is also orthogonal
to the base vector xb.

Definition 2 The tangent direction codebook, Cdir(ĝ[t−1]),
for the base point ĝ[t− 1] is

Cdir(ĝ[t− 1]) = {P(x1, ĝ[t− 1]), . . . , P(xN , ĝ[t− 1])} .

To construct good tangent codebooks, note that if the change
in the channel is assumed to be isotropic, then it can be shown
that the tangent direction vector is also isotropically dis-
tributed in the tangent space. This motivates finding canon-
ical codebooks that lead to an isotropic distribution in the
tangent space. Further improving the direction codebook de-
sign, or constructing an optimal one, is left for future work.

To formalize the tangent direction quantization, recall
that the quantized channel in the next time instant will be
calculated as G(ĝ[t − 1], ê[t], 1). Given that the loss in sum
rate is related to the chordal distance between the actual and
quantized channel, the quantized tangent direction will be
given as

êdir = argmin
xi∈Cdir(ĝ[t−1])

d(G(ĝ[t− 1], êmagxi, 1),g[t]) (12)

where the tangent magnitude, êmag, is given by the output of
the magnitude quantization step.

5. SIMULATION RESULTS
In this section we present simulation results to demonstrate
the performance of IA when channel knowledge at the trans-
mitter is obtained via the Grassmannian differential feedback
strategy detailed in Section 4. To remove the limitation of a
per-stream receiver, we calculate the sum rate of a decoder
which considers all desired symbols jointly and treats leak-
age interference as colored Gaussian noise. Since the fre-
quency extended system can be viewed as a virtual Nsc×Nsc
MIMO system, the sum rate achieved is given by,

Rsum =

K∑
k=1

1

Nsc
log2

∣∣∣I+ (σ2I+Rk

)−1
(Hk,kFkF

∗
kH

∗
kk)
∣∣∣ ,

where Rk =
∑

i ̸=k Hk,iFiF
∗
iH

∗
k,i is the interference co-

variance matrix and the precoders, Fk =
[
f1k , f

2
k , . . . , f

dk

k

]
,

are calculated given ideal or quantized CSI. For the results
in this section, we use the IA algorithm in [2]. Although
a closed form solution for the IA precoders exists for the
SISO frequency extended interference channel in [1], it can
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Figure 2: This figure shows the performance of IA. For
slowly varying channels, the proposed algorithm allows IA
networks to approach perfect CSI performance.

be shown that the proposed solution results in poor perfor-
mance if not further improved [11].

We consider channels with L = 3 and a uniform fad-
ing profile, i.e. Rhk,i

= 1/
√
LIL, temporally correlated ac-

cording to a first order autoregressive model. Each channel
is given by hk,i[t] = ηhk,i[t − 1] +

√
1− η2zk,i[t] where

zk,i = CN (0,Rhk,i
) and η is a function of the normalized

Doppler spread fDTs such that η = J0(2πfDTs).
Fig. 2 shows the sum rate achieved by 3 users using IA

over 16 channel extensions. CSI is obtained by our proposed
GDC algorithm, the strategy in [9], and random vector quan-
tization. For all the feedback strategies shown, each channel
is quantized using 10 bits. For our GDC algorithm and the
strategy in [9], 7 and 3 bits are used for the tangent direc-
tion and magnitude respectively. The magnitude codebook
parameters are set to β = α−1 = 2.

We see that no matter the quality of CSI, IA greatly out-
performs random beamforming. In the case of perfect CSI,
the rate of increase of sum-rate with SNR is 1.33, which
approaches the 1.46 degrees of freedom predicted in theory
when coding over 16 extensions.

As for the performance of IA with our GDC feedback
framework, the sum rate achieved by IA has been greatly
improved by exploiting temporal correlation in the channel.
Although for constant feedback resources the multiplexing
gain will never be preserved, the proposed algorithm exhibits
close to perfect performance in correlated channels over the
SNR range of interest. Since a system will almost never func-
tion in the asymptotically high SNR regime, the goal is to
optimize for the medium to high SNR where IA is likely
to be used. The proposed algorithm succeeds in providing
negligible sum rate loss up to an SNR of 30dB, in chan-
nels with a normalized Doppler of up to 10−2. In fact, this
can be achieved with much less feedback bits as opposed to
the 10 bits/channel shown in Fig. 2. The proposed algo-
rithm continues to outperform memoryless quantization even
at a significant Doppler of fDTs = 0.05. Compared to the
strategy in [9], our algorithm consistently outperforms at all
Dopplers, and does so increasingly for slower fading chan-
nels. This is due mainly to the proposed adaptive codebooks.

A more detailed performance evaluation and comparison to
other differential feedback strategies is omitted due to space
constraints and will be included in future work.

6. CONCLUSION

We proposed a feedback strategy based on Grassmannian
differential coding for SISO interference channels with IA
over frequency extensions. Channel responses are tracked by
moving along geodesic paths defined via quantized tangent
feedback. Our approach exhibits significant improvements
over earlier methods due to the optimized tangent and mag-
nitude codebooks. The proposed algorithm can use the chan-
nel’s temporal correlation to provide more accurate channel
knowledge and better sum rate performance for a large range
of SNR even with small quantization codebooks.
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