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ABSTRACT

Audio-visual speech recognition (AVSR) involves recog-
nising of what a speaker is uttering using both audio and vi-
sual cues. While phonemes, the units of speech in the audio
domain, are well documented, this is not equally true for the
speech units in the visual domain: visemes. In the litera-
ture, only a generic viseme definition is recognised. There
is no agreement on what visemes practically imply, and if
they are just related to mouth position or mouth movement.
In this paper a visual-only speech recognition system is pre-
sented, trained using either PCA or optical flow visual fea-
tures. Recognition rate changes depending on which prac-
tical viseme definition has been used. Four viseme defini-
tions were tested and results are analyzed in order to estab-
lish which is, within the 4 candidates, the best performing
viseme definition.

1. INTRODUCTION

Many authors have demonstrated that the incorporation of
visual information into speech recognition systems can im-
prove robustness [1]. Papers have described systems per-
forming audio-visual speech recognition on letters [2], dig-
its [3] or words [4, 5] and in a few cases sentences [4].
In the same way, audio-visual speech corpora evolved from
isolated digits [6, 7], to isolated words [8], few words se-
quences [9, 10, 11], to continuous speech [12, 13, 14]. Con-
tinuous speech advantages are a full vocabulary, context base
utterance and a full coverage of lip positions and movements.

Increasing the vocabulary size, the speech unit for speech
recognition has to pass from a word level, to a sub word level.
The natural candidate is the viseme. A viseme is defined as
a visually distinguishable unit, the equivalent in the visual
domain of the phoneme in the audio domain [1]. Despite this
general definition, it is not clear what a viseme is and how it
can be obtained. Moreover, it is not clear yet if the viseme is
simply related to mouth position or, in a more complex way,
to lip movements.

There is no agreement even on the total viseme number.
In this work 4 different viseme practical definitions were
tested, and the total viseme number is different in each of
them (from 11 to 15, plus a silence viseme).

In order to analyze visemes, a big continuous speech
audio-visual database is required. The best datasets, in
terms of number of speakers and sentences uttered, are AV-
TIMIT [14] and IBM ViaVoice [13]. Currently, none of them
is publicly available, so a smaller dataset was used in this
work: VIDTIMIT [12].

Thus, the aim of this work is to test a speech recogni-
tion system, trained using two different visual features (either
PCA or optical flow), using several viseme definitions. Since

the focus of this work is on the visual part of speech recogni-
tion, visual-only cues were tested. No audio cues were used.

This work is structured as follows: firstly, an overview
of practical viseme definitions is given, then two feature ex-
traction techniques are presented, and finally a recognition
system based on a HMM is presented.

2. VISEME MAPS

This work is focused on continuous speech and the unit of
recognition is thus a viseme. As already stated, in literature
visemes have different interpretation and there is no agree-
ment on the way to define them. Actually, two practical def-
initions are plausible:

• Visemes can be thought in terms of articulatory gestures,
such as lips closing together, jaw movement, teeth expo-
sure, etc.

• Visemes are derived from the grouping of phonemes hav-
ing the same visual appearance.

The second definition is the most widely used [1, 15, 16, 17],
even though no evidence has been provided that it is bet-
ter than the first definition [15]. Using the second approach,
visemes and phonemes are strictly correlated, and visemes
can be obtained using a map of phonemes to viseme. This
map has to be a many-to-one map, because many phonemes
can not be distinguished using only visual cues. This is the
approach used in this work. Within this approach, there are
two possible methods to build a map:

Linguistic viseme classes are defined through linguistic
knowledge and the intuition of which phonemes might
appear the same visually.

Data Driven viseme classes are formed performing a
phoneme clustering, based on features extracted from the
ROIs.

A data driven method has several advantages. First of all,
since most viseme recognition systems use statistical models
trained on data, it might be beneficial to automatically learn
natural classes from data. Secondly, it can account for con-
textual variation and differences between speakers (but only
if a large database is available) [15]. This is particularly im-
portant because the linguistic-based method is usually per-
formed with canonical phonemes in mind, while recognition
is done on continuous speech.

All the four maps tested in this work has a quite small
viseme number (from 11 to 15, plus silence viseme) similar
to 14 classes present in theMPEG-4 viseme list [18]. In other
maps the viseme number is much higher, e.g. Goldschen map
contains 35 visemes [19].

In the first one, Janet & Margaret group 50 phonemes
into 11 visemes in the English language [20] for what they
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describe “as usual viewing conditions”. A map linking
phonemes to visemes is shown in Table (1). In this table
visemes are labelled using a letter, from /A to /K and a silence
viseme has been added, labelled using /S. The last column
is a suggested phoneme to viseme mapping for the TIMIT
phoneme set. Two phonemes are not listed in the table: /hh/
and /hv/. No specific viseme is linked to them because, while
the speaker is pronouncing /hh/ or /hv/, the lips are already in
the position to produce the following phoneme. Because of
this /hh/ and /hv/ have been merged to the following viseme.
The table shows the viseme visibility rank and occurrence
rate in spoken English [20]. This map is purely linguistic.

The second map analyzed is proposed by Neti et
al [16]. This map has been created using IBM ViaVoice
databaset [13] and using a decision tree, in the same fash-
ion as decision trees are used in order to create triphoneme
models. Thus, because of these two aspects, this map can
be considered a mix of linguistic and data driven approach.
Neti’s map is composed by 43 phonemes and 12 classes (plus
a silence class).

Hazen et al. [14] use a data driven approach. They
perform bottom-up clustering using models created from
phonetically labelled visual frames. The map obtained is
“roughly” [14] based on this clustering technique. The rea-
son of this apparent inaccuracy is that the clustering results
vary a lot depending on the visual feature used. Hazen et al.
group 42 phonemes into 14 visemes (plus a silence viseme).

Finally, Bozkurt et al [17] created a map using the lin-
guistic approach. They define the phonemes clustering as
“done in a subjective manner, by comparing the viseme im-
ages visually to assess their similarity” [21]. The map is
composed by 15 viseme (plus a silence viseme), and 54
phonemes.

It is not simple a task to compare these maps because the
number of viseme class and the number of phonemes clus-
tered are not constant within the four maps. Jeffers clus-
ters 50 phonemes in 11 classes, Hazen 42 phonemes in 14
classes, Neti 43 phonemes in 12 classes and Bozkurt 54
phonemes and 15 classes (silence class and phonemes not
included). However, it is clear that some similarities are
present, particularly between the Jeffers and Hazen maps.
All the maps but Bozkurt have 4 vowel classes, but their
composition varies a lot within the maps. On the contrary,
Bozkurt map has 7 vowel visemes.

On the other hand, more neat is the situation about con-
sonants; in this case all the maps have a specific class for
phonemes {/v/, /f/} and for {/ch/, /jh/, /sh/, /zh/}. Moreover,
both Jeffers, Neti and Bozkurt have a specific class for {/b/,
/m/, /p/} and {/th/, /dh/}, while Hazen splits the first group in
two classes and the second is merged with other phonemes.
Aside for this, Hazen map is significantly different for the
others, while Jeffers and Neti have an impressive class corre-
spondence.

The major difference within the maps is that the
phonemes {/pcl/, /tcl/, /kcl/, /bcl/, /dcl/, /gcl/, /epi/} are not
considered in the analysis by Jeffer, Neti and Bozkurt, while
they are spread into several classes by Hazen.

As an aside, it is possible to analyze the viseme content
in a digits task using these different maps. Many visemes
are missing, in fact the viseme used in a digit set are 8 (on
11) using Jeffers map, 9 (on 14) using Hazen map, 10 (on
12) using Neti map and 10 (on 15) using Bozkurt map. This
further supports the argument that studying a digits task for

Viseme Visibility Rank Occurrence [%] TIMIT Phonemes
/A 1 3.15 /f/ /v/

/B 2 15.49
/er/ /ow/ /r/ /q/ /w/
/uh/ /uw/ /axr/ /ux/

/C 3 5.88 /b/ /p/ /m/ /em/
/D 4 .70 /aw/
/E 5 2.90 /dh/ /th/
/F 6 1.20 /ch/ /jh/ /sh/ /zh/
/G 7 1.81 /oy/ /ao/
/H 8 4.36 /s/ /z/

/I 9 31.46
/aa/ /ah/ /ay/ /eh/
/ey/ /ih/ /iy/ /y/

/ae/ /ax-h/ /ax/ /ix/

/J 10 21.10
/d/ /l/ /n/ /t/

/el/ /nx/ /en/ /dx/
/K 11 4.84 /g/ /k/ /ng/ /eng/

/S - -
/sil/ /pcl/ /tcl/ /kcl/
/bcl/ /dcl/ /gcl/

/h#/ /#h/ /pau/ /epi/

Table 1: Jeffers phonemes to viseme map [20]. The last
viseme, /S is used for silence. The table shows the viseme
visibility rank and occurrence rate in spoken English. Orig-
inally, phonemes {/pcl/, /tcl/, /kcl/, /bcl/, /dcl/, /gcl/, /epi/}
were not included in Jeffers & Barley map, so they have been
included in the silence class by the authors.

visual feature is of limited use.

3. FEATURE EXTRACTION

In order to perform feature extraction, the mouth, or ROI (Re-
gion of Interest), has to be detected. The ROI is found using
a technique [22] based on two stages: the speaker’s nostrils
are tracked and then, using those positions, the mouth is de-
tected. The first stage succeeds on the 74% of the database
sentences, so the remaining 26% has been manually tracked
to allow experimentation on the full dataset. The second
stage has 100% success rate. Subsequently the ROI is rotated
according to the nostrils alignment. At this stage the ROI is a
rectangle, but its size might vary in each frame. Thus, ROIs
are either stretched or squeezed until they have the same final
size. The final size is the mode calculated using all ROIs size.

Having defined the region of interest, a feature extrac-
tion stage has to be done, in order to perform the viseme
recognition. Two different feature extraction techniques
are used: Principal Component Analysis (PCA) and Opti-
cal Flow. Both techniques are appearance-based, rather than
shape-based [23].

The first technique used is PCA, also know as eigen-
lips [24]. In this experiment the optimal number of coeffi-
cients (the feature vector length) is investigated. A vector too
short would lead to a low quality image reconstruction, but
a too long one would be difficult to be model with a HMM.
Along with PCA features, the use of first and second order
derivatives are also investigated. Higher order features are
added because it is likely that the lips’ speed and accelera-
tion carry more information than static features. These high
order features are defined as:

Dk[i] = PCAk[i]− PCAk[i−1]

Ak[i] = Dk[i]−Dk[i−1]
(1)

where i represents the frame number in the video, and k ∈
[1..N] represents the kth PCA value. In literature these dy-
namic features are also called ∆ and ∆∆.
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(a) dR = 2 and dC = 4 (b) dR = 4 and dC = 8

Figure 1: Example or two different downsampling.

Optical flow is the distribution of apparent velocities of
movement of brightness pattern in a image. It can arise from
a relative motion of object or of the viewer. Consequently,
optical flow can give important information about the spa-
tial arrangement of the objects viewed and the rate of change
of this arrangement [25]. The code used [26] implements
the Lucas-Kanade technique [27]. Its output is a two dimen-
sional speed vector for each ROI point. Therefore, a data
reduction stage, or downsampling, is required. The image is
divided in dR× dC blocks, and for each block the median of
the horizontal and vertical speed is calculated. In this way
dR · dC 2D speed vectors are obtained. Figure 1 shows two
different downsamplings.

4. EXPERIMENT

4.1 VIDTIMIT Dataset

The VIDTIMIT dataset [12] is comprised of the video and
corresponding audio recordings of 43 people (24 male and
19 female). In each video a single speaker recites a short
sentence chosen from the test section of the TIMIT corpus.
The selection of sentences in VIDTIMIT has a full viseme
coverage, no matter what is the viseme definition used. The
recording was done in an office environment using a broad-
cast quality digital video camera at 25 fps. The video of each
person is stored as a numbered sequence of JPEG images
with a resolution of 512 x 384 pixels. 90% quality setting
was used during the creation of the JPEG images. For the re-
sults presented in this paper, the database has been divided in
a training group (295 sentences) and a test group (135 sen-
tences). Both groups are balanced in gender and with similar
phoneme occurrence rates.

4.2 Hidden Markov Models

A viseme level HMM was trained, using both PCA and optical
flow features. A visemic time transcription for VIDTIMIT
was generated using a forced alignment procedure with
monophone HMMs trained on the TIMIT audio database.

The system was implemented using HTK. All visemes
were modelled with a left-to-right HMM, except silence
which used a fully ergodic model. The number of mix-
tures per state was gradually increased, with Viterbi recogni-
tion performed after each increase to monitor system perfor-
mance. No language model was used in order to assess raw
feature performance. The feature vector rate was increased

to 20 ms using interpolation. Both 3 and 4-state HMM were
used.

5. RESULTS

Figure (2) shows the performance of the 3-state HMM us-
ing PCA features and the Jeffers map. Results for the 4-
state HMM are not shown because no significant improve-
ment from the 3-state was achieved. Figure 2a shows the
results of the basic PCA coefficient tests obtained by vary-
ing the feature vector length N between 10 and 35. The best
performance was achieved with N = 15.

Figure 2b shows the performance of 15 PCA coeffi-
cients with high order coefficients added. These plots
clearly demonstrate the benefit of including dynamic fea-
tures. Recognition accuracy is at least 40% higher by in-
cluding both first and second order dynamics (depending on
the mixture number). Interestingly this improvement can be
achieved by using only dynamic coefficients and leaving out
the original PCA features. This support the theory of Bre-
gler et al. [24] that “the real information in lipreading lies
in the temporal change of lip position, rather then the ab-
solute lip shape”. Across all tests, increasing the gaussian
mixtures in each state increases performance. Beyond 35
mixtures the improvement is not significant. 20 ≤ M ≤ 30
is a good trade off between recognition rate and system com-
plexity (and computational time).

Figure 3 shows the recognition rate using optical flow
features. Once again, the results shown are for 3-state HMMs,
using Jeffers phonemes to viseme map. Like for PCA results,
the 4-state HMM does not achieve results significantly bet-
ter than 3-state. The three curves in Figure 3 represent three
different downsampling configurations (dR and dC values).
Unlike the PCA experiment, optical flow performance basi-
cally does not change by modifying the experimental setup.
Results are virtually the same for all the downsampling con-
figurations. It seems that, no matter what is the downsam-
pling performed, the information carried by this feature is
the same. The usage of high blocks number just adds redun-
dancy in the data extracted.

The results of figure 2 and 3 demonstrate that the PCA and
optical flow features obtain basically the same visual recog-
nition performance. This would indicate both feature set are
capturing broadly similar data on motion in the ROI.

In the second part of the experiments feature set and
HMM parameters were fixed, in order to compare the re-
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Figure 2: Viseme recognition rate varying the PCA feature vector length 2a and including higher order dynamics 2b. N10,
N15 refer to number of PCA features at 10, 15 etc.. In 2b PCA denotes 15 PCA features only, PCA D denotes addition of first
order dynamics, PCA D A denotes inclusions of both first and second order dynamics etc.
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Figure 3: Optical Flow viseme recognition rate varying
downsampling values dR and dC. Basically, the performance
achieved does not vary on downsampling configuration nor
state number.

sults from different maps. PCA features were extracted using
N = 15 and including first and second derivative coefficients
only; optical flow features were downsampled using dR = 2
and dC = 4 configuration; only 3-state HMMs have been used.

For this experiment, the optimal number of mixtures for
each individual viseme class was tracked.This overcomes
issues with different amounts of training data in different
classes. Thus HMMs used between 1 to 60 mixtures per state.

As shown in Table 2, Jeffers map obtains the best per-
formance in both PCA and optical flow features. Anyway
it is useful to compare Jeffers and Neti maps because, even
though many visemes are composed by the same phonemes
(5 classes are identical), the results are quite different.

Jeffers and Neti maps contains respectively 11 and 12
visemes (plus one silence viseme) and in the PCA Jeffers has
a 14% improvement over Neti. It is particularly interesting to
note that a pure linguistic map achieves a better result than a
mixed linguistic and data driven map. It is possible to argue

Viseme recognition rate [%]
Feature Jeffers Hazen Neti Bozkurt
PCA 60.1 46.1 46.3 41.8

Optical Flow 57.0 45.6 47.0 44.6

Table 2: Recognition result the on four maps using an opti-
mized mixture number for each viseme.

that, even using a large database (IBM ViaVoice database),
a linguistic map is still better. However, the maps differ
mainly because of the vowel classes. In particular, Jeffers has
2 big and 2 very small vowel classes (in term of number of
phonemes contained), while Neti has 4 quite balanced classes
(they contains almost the same number of phonemes). Jef-
fers may have an advantage because misclassification is less
probable if classes are big. Moreover, even having a com-
plete misclassification in the 2 small classes, this will have a
minor impact on the overall recognition rate. Practically, it is
possible to state that Jeffers map has just 2 big vowel classes,
because visemes /D and /G (see Table 1) have a very low oc-
currence and because elements belonging to these classes are
usually misclassified as belonging to /B and /I, the other two
vowel visemes.

Thus it is possible to see a link between vowel class num-
ber and recognition rate. The lower the vowel viseme num-
ber, the higher the recognition rate. This basically causes
the different performance between Jeffers and Neti maps and
it can explain the poor result achieved by Bozkurt map (7
vowel classes).

Jeffers map outperforms even considering the different
map guessing rate. Defining it as the reciprocal of total class
number, it spans from 8.33% for Jeffers map to 6.25% for
Bozkurt map. Jeffers has the highest guessing rate, but the
difference from other figures is so small that it can not be
considered as the outperform cause.
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6. CONCLUSIONS AND FUTURE WORK

This paper has presented a continuous speech recognition
system based purely on HMM modelling of visemes. A con-
tinuous recognition task is significantly more challenging
than isolated word recognition task such as digits. In terms
of AVSR, it is a more complete test of a systems ability to
capture pertinent information from a visual stream, as the
complete set of visemes is present in a greater range of con-
texts.

The importance of dynamic information for visual fea-
tures is clearly shown as the best performance of 60.1% was
achieved using only first and second order PCA derivatives.

Different phonemes to viseme maps have been tested.
These maps were created using different approaches (lin-
guistic, data driven and mixed). A pure linguistic map (Jef-
fers) achieved the best recognition rates, probably because its
vowel class configuration.

Work is ongoing to extend this system to comprise other
feature sets including different optical flow implementations
and Active Appearance Model (AMM) features to provide a
definitive baseline for visual speech recognition. The em-
phasis will be given in establish the optimal visual feature
set for the capture of dynamics in human mouth movements.
Certainly, in order to test Jeffers map effectiveness in a real
scenario, the presented tests have to be performed including
audio cues as well. We hope to present future results on a
larger continuous speech dataset.
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