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ABSTRACT
We focus on the problem of passive localization of radio-
sources, solved by means of several separated multiarrays
(base stations) linked with a central process unit. Tradition-
ally, the procedure relies on two distinct steps: intermedi-
ate parameters are first estimated (like angles-of-arrival or
times-of-arrival), then the position is deduced thanks to these
transmitted intermediate parameters. New strategies estimat-
ing the position directly by considering the whole base sta-
tion network as a unique sensor network appeared recently
and offered promising results. To the best of our knowledge,
the characterization of their performances has not yet been
established in a deterministic signal context. In this article
the model is developed and the corresponding Cramer-Rao
bound is expressed. This bound represents a useful tool to
quantify what new one step approaches can offer in terms
of optimal performances. Numerical study compare here the
proposed bound to the performances of traditional 2 steps
and recent one step approaches. We show that for one source
existing techniques performs well and equivalently, but the
two sources case underline the gap between 2 steps and 1
step approaches. Moreover, we underline the role played by
the time-bandwidth product.

1. INTRODUCTION

Passive emitters geolocalization has always received great
attention by the signal processing community over the last
decades. This problem is commonly solved by means of sev-
eral arrays of sensors (base stations) linked with a central
process unit (CPU). We focus here on the line-of-sight (LOS)
context.

Traditionally, the source localization relies on two steps
[2]: intermediate parameters, often called measurements (for
example the angles-of-arrival (AOAs) as considered in this
article) are first estimated on each base station separately. In
a second step, the position is then deduced thanks to a local-
ization algorithm (see [9, 6] for example) using all transmit-
ted intermediate parameters at the CPU.

This common strategy suffers from limitations and is
clearly suboptimal [2]. First, solving the problem by means
of a multiple step strategy is often suboptimal [11]. As the
first step does not take into account the fact that the received
signals at the stations come from the same emitters this strat-
egy is suboptimal. Moreover in passive multi-emitter con-
text, the problem is ambiguous since one has to identify
among all available measurements, which subset of measure-
ments characterize each source, leading to “data association”
problems [11]. Moreover, the performance and the number
of resolvable emitters on each station are locally limited by
the number of sensors of the considered station. This is the

reason why an approach based on a one step strategy, gather-
ing the received signals of all available stations, that directly
provides the source location, appears of great interest.

Recent algorithms [1, 3] estimate the position starting di-
rectly from all the received signals collected on all base sta-
tions in a direct “1 step” procedure. The direct position de-
termination (DPD) [1] is based on a filter banks, whereas [3]
relies on a alternative spatio-temporal approach. For such
processing all received signals should be available directly at
the CPU in order to compute the covariance matrix of the
whole multiarray network. As it imposes stronger practi-
cal requirement, it underlines the particular need of a per-
formance characterization, in order to quantify the gain com-
pared to conventional strategies that require less technologi-
cal means. For that, the Cramer-Rao bound [10] appears to
be a useful benchmark to quantify their optimality.

The comparison between one step and two steps pro-
cedures, in the location strategies attracts much interest re-
cently [2, 4]. The stochastic CRB for passive localization
by multiarray network for the wideband signal case can be
found in [7] and in [5] for the multiple sources case. In [1]
the CRB was also provided for gaussian sources and under
the assumption that the signals at the output of the Fourier
Transform are uncorrelated. To the best of our knowledge,
the general case of deterministic wideband signals has never
been treated. This paper proposes a general CRB for pas-
sive localization of multiple sources in a deterministic signal
context and to compare it with the main existing algorithms.

The outline of the paper lies as follows : the signal model
is introduced in section 2. Section 3 focuses on the CRB
calculation. Section 4 presents some numerical results that
underline the potential gain compared to conventional strate-
gies.

2. SIGNAL MODELING AND PROBLEM
FORMULATION

We focus on the problem of locating multiple emitters on
L stations composed of Nl (1 ≤ l ≤ L) sensors. Let us de-
note N = ∑l Nl the total amount of sensors. Let xl(t) be
the observation vector of the lth station, and let us consider
M emitters whose unknown signals (complex envelopes) are
denoted sm(t) (1 ≤ m ≤ M). Assuming classically that the
signals are narrowband on each station, we have

xl(t) =
M

∑
m=1

ρl,mal(θl(pm))sm(t− τl(pm))+nl(t), (1)

where pm denotes the D× 1 coordinates vector of the mth
emitter. The attenuation ρl,q is an unknown complex pa-
rameter standing for the channel effect. The steering vector
al(θl(p)) is the sensor response of the station l which norm
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is
√

Nl . It depends on the angle of arrival on the lth station θl ,
seen here as a function of the position p directly. For nota-
tional convenience we will consider al(p), al(θl(p)). The
delay τl(pm) is the relative time of arrival of the mth signal
on the lth station, the origin being arbitrary chosen on the
first station

τl(pm),
||pm−p(l)||− ||pm−p(1)||

c
, (2)

where p(l)(1 ≤ l ≤ L) is the coordinates vector of the lth
station.

2.1 Data model
Denoting {sm(ωk),1≤ k ≤ T} the discrete Fourier coeffi-
cients of the signal sm(t) over T samples we have :

sm(t) =
1
T

T

∑
k=1

sm(ωk)e jωkt , 1≤ t ≤ T, (3)

with
ωk = 2π

k−1
T

. (4)

Assuming now that T is large enough so that we have∣∣∣∣Fe

T
τl(pm)

∣∣∣∣� 1, (5)

where Fe is the sampling frequency, then we can make the
following narrowband assumption:

sm(t− τl(pm))≈
1
T

T

∑
k=1

sm(ωk)e jωkte− jωkτl(pm). (6)

Hence, we have

xl(t) =
1
T

M

∑
m=1

ρl,mal(pm)
T

∑
k=1

e− jωkτl(pm)sm(ωk)e jωkt +nl(t)

(7)
and considering the following stacked vector

x(t) =
[
xT

1 (t) ... xT
L (t)

]T
, (8)

we have

x(t) =
1
T

M

∑
m=1

T

∑
k=1

uk(pm,ρm)sm(ωk)e jωkt +n(t), 1≤ t ≤ T

(9)
with

uk(pm,ρm) =

√
N√

∑l Nl |ρl,m|2

 ρ1,ma1(pm)e− jωkτ1(pm)

...
ρL,maL(pm)e

− jωkτL(pm)

 .
(10)

So that uk(pm,ρm) has a constant norm equal to N. We can
then define the following Signal-to -noise ratio SNR):

SNRm = 10log10

(
∑t |sm(t)|2

σ2

)
(11)

= 10log10

(
∑k |sm(ωk)|2

T σ2

)
. (12)

Let ψl,m and φl,m be the modulus and phase of ρl,m =

ψl,me jφl,m , respectively. Let us denote s̄ and s̆ the real and
imaginary part of the complex number s, respectively. The
unknown parameter vector is then

η =
[
pT

1 ... pT
M ψT

1 ... ψT
M φ

T
1 ... φ

T
M sT

]T
,

(13)
with

ψm = [ ψ1,m ... ψL,m ]
T
, (14)

φ m = [ φ1,m ... φL,m ]
T
, (15)

s=
[
sT (ω1) ... sT (ωT )

]T
, (16)

s(ωk) =
[
sT

1 (ωk) ... sT
M(ωk)

]
, (17)

sm(ωk) = [ s̄m(ωk) s̆m(ωk) ] . (18)

As we consider the deterministic signal case the Fourier co-
efficients are now part of the unknown parameter vector. De-
noting

m(η , t) =
1
T

M

∑
m=1

T

∑
k=1

uk(pm,ρm)sm(ωk)e jωkt (19)

the model can be finally written as :

x(t) =m(η , t)+n(t), 1≤ t ≤ T. (20)

2.2 Problem formulation
The problem lies in estimating the position pm in (9) given T
samples of x(t). In order to evaluate the Cramer-rao bound
of the considered estimation problem, we assume that :
• nl(t) is an additive centered Gaussian noise, assumed

temporally white and circular, such that

E
[
nl(t)nH

l (t)
]
= σ

2INl , (21)

E
[
nl(t)nT

l′ (s)
]
= 0Nl×Nl′ , (22)

where E [.] denotes the mathematical expectation. We
also denote IN the N ×N identity matrix and 0N×M a
N×M matrix composed of zeros. δ stands for the Kro-
necker symbol :

δmn =

{
1 i f m = n
0 else

. (23)

Since it is well-known that the noise variance estimation
does not influences the performances of the other param-
eters for such a deterministic signal model [8], σ2 does
not appear in the unknown parameter vector η .

• The number of sources is assumed to be known.
• The signals are assumed deterministic.

3. CRB CALCULATION

The CRB is a useful benchmark that provide a lower bound
on the variance of unbiased estimators. For its calculation
we first need the expression of the Fisher information matrix
(FIM) :

J(η) = E

[
∂L(x|η)

∂η

(
∂L(x|η)

∂η

)T
]
, (24)
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where L(x|η) is the log-likelihood of the considered problem
that depends on the data x and the unknown parameter vec-
tor η . In our case, the observation vector is Gaussian with
a parametrized mean and its covariance matrix is σ2IN×N .
According to a well known formula ([10] equation (8.34),
p.927) we directly have the expression of the FIM :

[J(η)]i j =
2

σ2

T

∑
t=1

Re
{

∂m(η , t)H

∂ηi

∂m(η , t)
∂η j

}
, (25)

where Re{.} stands for the real part. In the sequel we will
denote α a M×1 vector whose mth element αm can be either
xm, ym,ψl,m or φl,m (1 ≤ m ≤M) where pm = (xm,ym)

T de-
notes the emitter coordinates vector. For the sake of brevity
we will also denote uk,m , uk(pm,ρm). Straightforward cal-
culation leads to

∂m(η , t)H

∂αm
=

1
T

T

∑
k=1

∂uk,m

∂αm
sm(ωk)e jωkt (26)

∂m(η , t)H

∂ s̄m(ωk)
=

1
T
uk,me jωkt (27)

∂m(η , t)H

∂ s̆m(ωk)
=

1
T

juk,me jωkt (28)

But since we have:
T

∑
t=1

e j(ωk′−ωk)t = T δkk′ , (29)

we can write the following FIM blocks:

T

∑
t=1

Re
{

∂m(η , t)H

∂αm

∂m(η , t)
∂αn

}
=

1
T

Re

{
T

∑
k=1

∂uH
k,m

∂αm

∂uk,n

∂αn

×s∗m(ωk)sn(ωk)} (30)

T

∑
t=1

Re
{

∂m(η , t)H

∂αm

∂m(η , t)
∂ s̄n(ωk)

}
= Re

{
∂uH

k,m

∂αm
uk,ns∗m(ωk)

}
,

(31)

T

∑
t=1

Re
{

∂m(η , t)H

∂αm

∂m(η , t)
∂ s̆n(ωk)

}
=−Im

{
∂uH

k,m

∂αm
uk,ns∗m(ωk)

}
,

(32)

T

∑
t=1

Re
{

∂m(η , t)H

∂ s̄m(ωk)

∂m(η , t)
∂ s̄n(ωk′)

}
= Re

{
uH

k,muk′,n
}

δkk′ , (33)

T

∑
t=1

Re
{

∂m(η , t)H

∂ s̆m(ωk)

∂m(η , t)
∂ s̆n(ωk′)

}
= Re

{
uH

k,muk′,n
}

δkk′ , (34)

T

∑
t=1

Re
{

∂m(η , t)H

∂ s̆m(ωk)

∂m(η , t)
∂ s̄n(ωk′)

}
= Im

{
uH

k,muk′,n
}

δkk′ . (35)

Im{.}denotes here the imaginary part. Then the CRB
is deduced by the inverse of the FIM. This CRB can then
be used as a benchmark since it represents the best achiev-
able performance for the passive geolocalization of multiple
sources in a deterministic signal context.

CRB(η) = J−1(η). (36)

4. GEOLOCALIZATION STRATEGIES

We present here three strategies that will be compared to the
provided CRB.

4.1 Classical two steps approach
The conventional strategy relies on two steps : in the first
step the AOAs are estimated on each station (here thanks to
a MUSIC algorithm [10]), the second step estimates the po-
sition thanks to a least squares step [9].

4.2 DPD technique
The DPD technique [1] relies on the use of filter banks in
order to treat the problem as a narrowband problem. Then an
incoherent sum of MUSIC based criteria on each frequency
channel is optimized in order to estimate the position directly.
The size of the filter bank (unwindowed Fourier Transform)
is K = 4 in this paper.

4.3 LOST processing
The localization by space-time processing (LOST) [3] relies
on the use of a space-time observation vector, where regu-
larly delayed versions of x(t) are embedded into an extended
vector y(t) =

[
xT (t) ... xT (t−K−1)

]T that is used to
form a spatio-temporal covariance matrix. The problem can
then also be treated as a narrowband problem and the posi-
tion can be deduced directly. The number of shifts is here
K = 4.
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Figure 1: Four base stations A, B, C and D on the corner
of a 4× 4 km square. The sources are in S1(0,1000) and
S2(0,−1000), respectively.

5. NUMERICAL RESULTS

In this section we consider four base stations A, B, C and
D all composed of a uniform circular array, with a radius
equal to 0.5 wavelength and a number of sensor equal to
NA = NB = NC = ND=3. We consider two emitters in S1 and
S2 illustrated by figure 1. The number of samples is T = 200.
In this section, ψl,m is generated thanks to a Gaussian random
process (mean=1, std=0.2) and φl,m is uniformly distributed
onto [0,2π]. The noise n(t) is circular white Gaussian. The
signals are generated from a white Gaussian process, so that
their bandwidth are equal to the sampling frequency Fe, pre-
cised each time. The performances are studied trough the
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root mean square error (RMSE) of the miss distance defined
in meters :

RMSE =

√√√√ 1
Mc

Mc

∑
k=1

(xm− x̂k,m)2 +(ym− ŷk,m)2, (37)

where Mc is the number of Monte-Carlo runs and x̂k,m and
ŷk,m denote the kth estimation of the true position (x,y) of
the emitter. The corresponding CRB is

CRB =
√

CRB(xm)+CRB(ym), (38)

where CRB(xm) and CRB(ym) denote the CRB of the corre-
sponding parameter.

We denote τmax the maximal time-delay-of-propagation
(TDOA) between the two most separated stations. Note
that since the provided CRB rely on (5) when the Time-
Bandwidth product becomes large compared to the number
of samples this bound becomes irrelevant. Nevertheless, for
the considered sensor network, if we assume a sampling fre-
quency Fe = 300kHz, for typical GSM signals, and taking
T = 100 samples the maximum value of the Time-Bandwidth
product divided by the number of samples Fe

T ×τmax is nearly
1 percent. Hence, the approximation in (5) seems rather re-
alistic in practical scenarios.

The calculated CRB is compared in this section to the
three previously presented algorithms : a conventional two
step strategy (denoted AOA) and two recent one step strate-
gies (DPD and LOST).

5.1 Influence of the number of sources
In this section we choose Fe = 5kHz , so that the time-
bandwidth product, defined as the emitter bandwidth product
by the time of propagation across the sensor network, is here
equal to 0.2.

On figure 2 we consider only one source. As we can
see, all strategies behaves asymptotically very close to the
CRB. For low SNR, one step apoproaches outperforms con-
ventionnal two steps approach. Note that DPD technique is
already known to be asymptotically equivalent to a conven-
tional strategy for one source [2].

On figure 3 we consider two sources. in that case exist-
ing one step strategies are known to perform better than a
conventional approach and the theoretical gap becomes ob-
viously larger in a multiple sources context. It show the rel-
evancy of the existing one step approaches in this context,
appeared to be close to the optimal performance.

5.2 Influence of the time-bandwidth (TB) product
Now we examine the influence of the time-bandwidth (TB)
product. This products plays a great role since its low val-
ues indicates when the signals can be assumed narrowband.
We compare here the CRB to the empirical performances of
previously cited algorithms for different values of the sam-
pling frequency in presence of one source and two sources in
figure 4 and 5, respectively.

As we can see on figure 4, for one source when the time-
bandwidth product is small all algorithms behaves equiv-
alently very close to the CRB. But when this product in-
creases, as expected it does not change the performances of
the traditional algorithms based on AOA estimation. One can
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AOA (2 steps)

DPD (1 step)
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CRB

Figure 2: RMSE of the first emitter only, T=200, number of
Monte-carlo runs=100, TB product=0.2.
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Figure 3: RMSE of the first emitter in presence of a second
emitter in S2, T=200, number of Monte-carlo runs=100, TB
product=0.2.

see that the larger the time-bandwidth the lower the CRB,
suggesting the fact that the time of arrival plays a bigger
role, so that a traditional algorithm that does not exploit the
dependency of time delay on the position can’t achieve the
CRB. For two steps approaches, when this product grows,
the narrowband approximation on which they are based on,
becomes less and less acceptable leading to a performance
breakdown that appears to be stronger for the DPD algorithm
than for the LOST technique.

On figure 5 we can see that provided that the TB product
is small one step procedures are close to the CRB but when
the time-bandwidth product increases new algorithms might
be found that can better exploit the TDOA since its influence
on the performances becomes stronger. Even for low values
of the TB product the traditional approach is clearly subopti-
mal.

6. CONCLUSION

In this paper we provide the expression of a new determin-
istic Cramer-Rao bound dedicated to the passive sources lo-
calization by multiarray network. The provided CRB can
now be used a benchmark in order to quantify what new
one step localization procedures can offer compared to the
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Figure 4: RMSE of the first emitter, SNR=0dB, T=200, num-
ber of Monte-carlo runs=100.

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

R
M

S
E

[m
]

τ B

 

 

AOA (2 steps)

DPD (1 step)

LOST (1 step)

CRB

Figure 5: RMSE of the first emitter in presence of a sec-
ond emitter in S2, SNR=0dB, T=200, number of Monte-carlo
runs=100.

conventional strategies. We showed that for one source all
strategies exhibit very close performances but when there is
two sources the potential gain increases strongly and exist-
ing one step approaches performs better. Finding an optimal
and practical exploitation of the original wideband model is
still an open question that should attracts interest regarding
the potential gain that could be achieved especially when the
time-bandwidth product is high.
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