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ABSTRACT

A blind speech separation method with a low computational com-
plexity is proposed. This method consists of a combination of in-
dependent component analysis with frequency band selection, and
a frame-wise spectral softmask method based on an inter-channel
power ratio of tentative separated signals in the frequency domain.
The softmask cancels the transfer function between sources and sep-
arated signals. A theoretical analysis is given. Performance and
effectiveness are evaluated via source separation simulations and a
computational estimate, and experimental results show the signifi-
cantly improved performance of the proposed method. The segmen-
tal signal-to-noise ratio achieves 7 [dB] and 3 [dB], and the cepstral
distortion achieves 1 [dB] and 2.5 [dB], in anechoic and reverber-
ant conditions, respectively. Moreover, there can be a reduction of
over 80% in computational complexity compared with unmodified
FDICA.

1. INTRODUCTION

In recent years, sophisticated mobile devices with microphones,
such as smart-phones and digital cameras, have become ubiquitous.
The improvement of sound quality for these devices used in noisy
environments is widely anticipated. In addition, the blind source
separation (BSS) technique has received much attention in many
industries for speech enhancement applications.

Independent component analysis (ICA) is one of the most re-
searched fields of the BSS method, with many studies aimed at fast
convergence [3], engineering research [11], etc. In particular, fre-
quency domain ICA (FDICA) [10] is expected to achieve significant
sound quality improvement for speech enhancement applications
because practical environments are generally reverberant; however,
it requires large computational complexity.

The time-frequency mask (TFM) method is another current
BSS research field, and one of the most common methods in an un-
derdetermined case is DUET [12]. DUET achieves significant sep-
aration performance using sparse signal decomposition and time-
frequency clustering (TFC). There are many TFM studies [12, 5, 2],
and these methods must store long-interval observed signals for
TFC. This means that the TFM method based on TFC requires con-
siderable computational resources.

In this paper, we propose a BSS method based on FDICA which
uses fewer computational resources, because lower battery power
consumption is needed for longer operating time using current pro-
cessors. Processors with higher performance and lower power con-
sumption will be common in the near future; thus, it may not seem
so important to reduce the computational resources which are re-
quired. However, sophisticated mobile devices with many extended
and rich functions, for example the user interface, must work con-
currently with basic functions such as sound input. Consequently,
lower power consumption would still be better for basic functions.
This implies the necessity and importance of using less computation
to perform FDICA to improve sound quality.
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In general, FDICA stores observed signals to estimate higher
order statistics (HOS); moreover, the time length of the stored sig-
nal must be long, for example over a few seconds. This leads to
large memory consumption to perform FDICA. Meanwhile, HOS
must be estimated from separated signals. In addition, the sepa-
rated signals are different in every iteration because the separation
matrix is updated in every iteration. This means that the separation
process for the long-term observed signals must work in every iter-
ation. Consequently, this leads to intrinsically large computational
complexity.

In this paper, we introduce a lower computation BSS method
based on FDICA with band selection and a frame-wise spectral
softmask. The sound source, e.g., a speech signal, consists of a
set of some predominant frequency bands such as formants; there-
fore, it is natural to assume that limited frequency bands are impor-
tant for source separation performance and learning FDICA. The
semi-blind source separation (semi-BSS) based on the similar con-
cept has been proposed by one of the authors [6]. In the semi-BSS
method, the band selection process contributes to the reduction of
computational complexity. The conventional method [6] achieves
practical separation performance; however, the amplitude of the
separated signal with null-beamformer (NBF) is attenuated accord-
ing to the lower frequency because the phase difference also be-
comes small in the low frequency region. This attenuation always
appears in the microphone-array signal processing of NBF, and this
is due to the degradation of the output signal. Therefore, in this pa-
per, we focus on the substitutional separation matrix process with-
out considering the band selection process.

The rest of the paper is organized as follows. In Section 2, we
briefly introduce the conventional method [6]. In Section 3, we pro-
pose the frame-wise spectral softmask. In Section 4, we show our
experimental results and evaluate the proposed method. Section 5
presents our conclusions and describes future work.

2. OUTLINE OF CONVENTIONAL SEMI-BSS METHOD

In this section, we briefly explain the conventional semi-BSS
method [6].

One of the authors has already proposed the semi-BSS method
with low computational complexity [6]. In this method, the target
signal is assumed to arrive from a known direction; and thus this
means ‘semi-blind’. First, a separation matrix initialization method
with the known direction of the target signal was proposed. This
method contributes a smaller number of iterations. Second, a band
selection method was proposed which contributes to smaller mem-
ory consumption, and a NBF was used as the substitutional separa-
tion matrix for the non-selected bands. Because NBF is one of the
most common beamformer methods used to block sound sources,
and the FDICA separation matrix corresponds to the coefficients
of the beamformer [7]. The proposed semi-BSS method achieves
significantly improved efficiency of computation and practical per-
formance.
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Figure 1: Block diagram of mixing and separation.

As mentioned in Section 1, in this paper, we will focus on the
substitutional separation matrix of the second method to improve
the degradation of the separated signals, and thus we will explain
the second method, band selection, briefly. Some bands are se-
lected by the magnitude of the determinant of a spatial covariance
matrix, and the selection occurs according to the largest magnitude.
Following band selection, the FDICA separation matrix is obtained
for the selected bands using the general FDICA algorithm. The
source directions of arrival (DOA) are estimated from the FDICA
separation matrix, and the permutation is solved by the estimated
DOA [7]. The estimated DOA of all the selected bands are aver-
aged, and for non-selected bands, the NBF coefficients, consisting
of the averaged DOA, are used as the substitutional separation ma-
trix. For the selected bands, the scaling ambiguity is solved using
the projection method [4]. Following the completion of the separa-
tion matrices for all frequency bands, the separation process obtains
the separated signals from the observed signals.

As mentioned in Section 1, the output signals of NBF are atten-
uated in the low frequency region; therefore, the separated signals
might be degraded.

3. PROPOSED METHOD

In this section, we formulate the signal model, and we propose the
spectral softmask method for separation of the non-selected bands
in order to improve the separated signal quality. In this paper, we
assume there are two source signals and two microphones.

3.1 Signal model

The observed signals in the time domain are transformed into the
frequency domain by Short Time Fourier Transform (STFT). The
convolutive model describing the signal propagation and mixing is
formulated in the frequency domain as follows:

X (k1) = A(K)S(k,1), (1)

where X(k,1) = [X; (k,1),X>(k,1)]T is an observed signal vector at
the microphones, S(k, 1) = [S1 (k,1), S, (k,1)]T is a source signal vec-
tor, A(k) is a mixing matrix, k is a frequency bin index, [ is a frame
index, and (-)T denotes the transpose operator.

In this case, the left half of Figure 1 shows the block diagram of
propagation, and indices k and / are omitted to simplify the diagram.
In Fig. 1, the source signals are located at direction 6;(k) (i corre-
sponds to the source number) on each frequency band, because in
the reverberant condition the source direction deviates on each fre-
quency band. T;5 and A;(k) are a delay and a gain corresponding
to the distance between the source position and the center of the
microphone position. In addition, 7;;(k) is the delay of each micro-
phone (j corresponds to the microphone number) on the frequency
band k.

Therefore, the mixing matrix A (k) is formulated as follows:

A (ke J@®) (ns+tu (k)
N Ay (k)e—io®) (s +1(k)

Ay (k)eJoE) (st (k)
AK) A (k) I0W s tea(e) |+ D)
where (k) is an angular frequency that is equivalent to 27w (kF; /N),
Fy is the sampling frequency, and N is the size of the FFT.

3.2 Frequency band selection

In this paper, we use the conventional method [6] for band selec-
tion because the purpose of the proposed method is to reduce the
degradation of the separated signals as mentioned in Section 1 and
2. First, the spatial covariance matrix Ry (k) is calculated as follows:

Rx(k) :EI[X(kJ)XH(kvl)]v 3)

where E; is the expectation operator over frame / and ()H is the
Hermitian operator. If there is an only one source in one of fre-
quency bands, the rank of Ry (k) is not full, and the determinant of
R, (k) becomes zero. Therefore, we assume that the determinant of
R, (k) shows degree of the number of source signals. In addition,
the number of bands might be determined by system specifications
which will be developed. Accordingly, the selection is performed
according to the largest magnitude of the determinant of R, (k) until
the number of bands selected reaches the designated number.

3.3 Learning separation matrix on selected bands

Following STFT and band selection, the separation matrix W (k) is
obtained using the general FDICA algorithm on the selected bands.
A separated signal vector Y (k, ) = [Y; (k,1), ¥ (k,1)]" is formulated
as follows:

Y(k, 1) = W(k)X(k,1). 4)

In this paper, we use an iterative FDICA algorithm [8] as follows:
Wy1(k) = W (k) —n - off-diag { E;[¢ (k. ) Y" (k, )| } W, (K), (5)

where p is an iteration number, 1 is a step-size and off-diag(-)
denotes the operator which all diagonal elements are set to
zero. ¢ (k,I) = [¢1(k,1),¢2(k,[)]T denotes the nonlinear func-
tion vector. Each function is ¢y,(k,l) = sgn(Re{Y,(k,1)}) +
Jsgn(Im{Y,,(k,1)}), and Re{-}, Im{-} denote the real and imagi-
nary parts, respectively. The function sgn(-) is used to obtain the
sign of each value.

3.4 DOA estimation from separation matrix

As mentioned in Section 2, the DOA of the source signals are esti-
mated from the separation matrix, and the permutation is solved by
the estimated DOA [7].

The separation matrix is represented by each element as fol-

lows:
w k w k wi(k
Wk) = {W;gkg wggkﬂ - {W;Ekﬂ’ ©

where w; (k) = [w;; (k) wip (k)]. From the standpoint of array signal
processing, we calculate the directivity pattern for each frequency
band from w;(k), and estimate the DOA of the source signals as
follows:

Pi(k) = arg;nin{wiT (k)x(k, y)}, )

where k(k, ) = [1,e/%:¥)] (p (k, y) = 21 (kF /N)(d /c) sin(y)) is
a steering vector, V¥ is a steering direction, d is the distance between
the microphones, and c is the velocity of sound. ¥;(k) is the di-
rectional null, and this corresponds to the source direction on each
frequency band. Therefore, we solve the permutation problem us-
ing the same method in [7], and a collected source direction éi(k)
is averaged over the selected bands to obtain the estimated DOA of
the source signal, é[, as follows:

1
Np e

6 = 0i(k), 8)

where N, is the number of bands, and Z is a set of the selected
bands.
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Figure 2: Block diagram of proposed method.

3.5 Frame-wise spectral softmask
3.5.1 Motivation and strategy

In the conventional method [6], the NBF is used as the substitu-
tional separation matrix for the non-selected bands. However, phase
difference is very small in the low frequency region; thus the per-
formance of the NBF becomes very poor. In particular, this leads
to extreme degradation in mobile devices because the distance be-
tween microphones is small. In contrast to the poor performance of
the NBF, the frame-wise softmask can still be obtained. Therefore,
for the non-selected bands, we applied the frame-wise spectral soft-
mask instead of the NBF. A block diagram of the proposed method
is shown in Fig. 2.

3.5.2 Tentative separation and analysis

We consider the delay (d/c)sin(8;) from the DOA obtained in Sec-
tion 3.4, and this is applied to the NBF to obtain tentative separated
signals. As mentioned in Section 3.1, propagation was assumed to
be from the source position to the center of the microphone posi-
tion. Therefore, the propagation delay 7;s can be omitted without a
loss of generality if we assume that the distance between the micro-
phones is small enough. In this case, the direction only depends on
the delay 7;;(k). In addition, the distance between the source posi-
tion and the microphone position can be reflected as the gain A; (k).
Therefore, the observed signal X;(k,) can be written as follows:

X;(k) = A1 (k)81 (k, )e=0Dm®) 4 4, k), (k, 1)e 0020
©))
In this case, we consider tentative signal separation. The right half
of Figure 1 shows the block diagram of the tentative separation, and
this process corresponds to NBF. The output signals of the NBF are
formulated as follows:
YNBE (k1) = X (k, 1)e 7 TOW X, (k, 1)e /@R B

o o (10)
YRBE (k1) = =X (k,1)e /20 f 1 X, (k, [)e /o0

where we consider the estimated delay for each channel as follows:

B = —(d/c)sin(61)/2, #12=(d/c)sin(6))/2,
T =(d/c)sin(62)/2, T2 =—(d/c)sin(62)/2.
Substituting Eq. (9) into Eq. (10), we obtain the relationship be-

tween the source signals S (k,/),S2(k,!) and the tentative separated
signal YNBE (k,1) as follows:

an

YIBE(k, 1) = Xy (k, De W2 — X, (k, 1)e /@0
S (kJ)e*jw(k)(Tn (k)+122) +A2(k)52(k’l)e*jw(k)(hl(k)“?m

)
— Ay (k)81 (k, e~ IOW 0+ _ A, ()8, (k, 1)e 100 (R (0+221)
(12)

In the reverberant condition, the direction of the direct sound is de-
viated by the reflected sound, however the deviation is small enough
because in general the direct sound is stronger enough than the
reflected sound. Therefore, we assume that the estimated direc-
tion 6; is approximately equivalent to the source direction 6;; thus
7;;(k) ~ %;; can be an appropriate assumption. YNBF (k. 1) is calcu-
lated by the same way, and consequently we obtain the approximate
relationship as follows:

YNBR (k1) = Ai(R)Si (K, 1) {em O HER) —gmjelfet®y - (13)

In the lower frequency region, (k) is smaller than in the higher
frequency region, and thus the amplitude of the delay section of
Eq. (13) takes a smaller value due to the lower frequency. This is
a reason of the degradation of the separated signals caused by the
conventional method as mentioned in Section 2.

3.5.3 Inter-channel separated signal mask

First, we consider a cost function as follows:

min E,{(A;(K)Si (k. 1) — iXi(k,1))*} (14)

where E| is the expectation operator and ¢ is a mask function. To
minimize the cost function Eq. (14), the differentials of ¢; is con-
sidered and the independence between each source signal is also
considered; the independence and the expectation utilize that cross
correlation terms between each source signal become zero. There-
fore, we obtain the Wiener solution and it is approximated by the
tentative separated signals in Eq. (13) as follows:

_ E{A7 (k)[Si(k,D)*}
 E{AT(R)IS1(k,1)[2} + E{A3 (k)[S2 (K, 1)}
o E Pk DIP)

B (DY + E{ P (kDY

In this paper, we consider the shortest expectation to reduce the

computational complexity and the frame-wise softmask M;(k,/) is
obtained as follows:

i

s)

[P (kD2
YRPE(k, D)2+ [V (k, D2
The obtained softmask varies frame by frame, and thus it can trace

temporal changes in each speech source signal.
Finally, the output separated signals are obtained as follows:

Mi(k,1) = 16)

W (k)X (k, 1) (FDICA)
YD =9 v (kX (k.1 (17)
{M; gk, l %X; E’Q lﬂ (Softmask)

4. EXPERIMENTAL RESULTS AND ESTIMATION OF
COMPUTATIONAL COMPLEXITY

In this section, we estimate the computational complexity required,
and show the performance of the proposed method using a source
separation simulation, in order to evaluate the efficiency and effec-
tiveness of the proposed method.

4.1 Estimation of computational complexity

We estimate the number of operations (multiplication, addition as
floating operations) based on Eq. (5) to evaluate the efficiency of
the proposed method. The parameters of FDICA are shown in Ta-
ble 3, and the estimate of the computational complexity is shown
in Table 1. The number of bands for the estimate is 64 which is
determined from the experimental results in Section 4.4. The unit
‘MOPs’ means the number of mega operations.

In Table 1, the proposed method shows an over 80% improve-
ment in the required computational complexity compared with un-
modified FDICA, and is almost equivalent to the conventional
method [6].
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Table 1: Computational complexity

FDICA  conventional  proposed
number of 287 46 48
operations [MOPs]  (100%) (16%) (17%)
Table 2: Signals for simulation

[ Anechoic | Reverberant
Samp. Freq. 8 [kHz]
Rev. Time — 500 [msec]
Voice type Male(2), Female(2)
Location pair | {-45,45}, {-90,0}, {-45,0} [deg]

4.2 Simulation conditions

The speech signals are recorded with two omni-directional micro-
phones (SHURE SM93) and the distance between them is 3.6 cm.
The recorded conditions are shown in Table 2 and Fig. 3. The
voice signals are played back via loudspeakers and recorded indi-
vidually, and the mixed signals are obtained when the simulation is
performed. The parameters of FDICA are shown in Table 3. The
number of bands ranges from 384 to 32 because these numbers are
roughly the ratio of integers, 3/4,1/2,---,1/16, for the number of
frequency bands 513.

As mentioned in Section 1, FDICA must store the observed sig-
nals whose lengths are longer than a few seconds. Additionally,
the separated signals to estimate HOS are different in every iter-
ation, because the separation matrix is updated in every iteration.
These are the primary reasons that the computational complexity
required for FDICA is high; therefore, the smaller number of selec-
tions contribute to a lower computational complexity, which results
in smaller memory consumption.

Although the classical FDICA algorithm is used in this paper,
it can be replaced with the state-of-the-art method. In that case, the
proposed method, which consists of band selection and the frame-
wise softmask for the non-selected bands, can be applied to any
state-of-the-art FDICA methods; therefore, the proposed method is
an improvement of the FDICA method without a loss of generality.

4.3 Evaluation measure

The performance of the proposed method is evaluated by the seg-
mental signal-to-noise ratio (SNRgeg) [1] and cepstral distortion
(CD) [9]. SNRgeg is very common method for evaluating noise
suppression, high-efficiency coding such as MP3, etc. In general,
SNRgeg is known to have better correlation with the perception of
noisy speech by humans than the entire interval SNR [1]. The pro-
posed method is based on the spectral softmask method, and thus
the degradation of the separated signals can be estimated. There-
fore, SNRgeg is appropriate for evaluating the proposed method. CD

Loudspeakers
O[deg] (height: 1.4[m])
-45(deg] e Bldeg]
S 1m]||
-90[deg]

< Microphones
3.6]cm] (height: 1.0[m])

(- S

Figure 3: Recording conditions.

Table 3: FDICA parameters

FFT Size 1024 [sample]
FFT Shift 256 [sample]
Learning Time 3 [sec]
Iteration max.200 [times]
Step Size 0.01

Initial Matrix Identity
Permutation Solver DOA [7]
Scaling Solver Projection method [4]

is another measure of the degree of distortion via the cepstrum do-
main, and this can evaluate distortion of a spectral envelope.

When we evaluate the proposed method, each frequency do-
main signal is transformed into the time domain signal via inverse
STFT. As mentioned in Table 3, the projection method [4] is used to
solve the scaling ambiguity of FDICA, and this means that each sep-
arated signal corresponds to one of the observed signals. Therefore,
we evaluate the performance between one of the observed signals
and the separated signal. Each term of the right side in Eq. (9) cor-
responds to one of the observed signal. The observed signal in the
time domain is formulated as follows:

x11(n) +x21(n),
x12(n) +x22(n),

x1(n)

18
o (n) (18)

where each separated signal in the time domain is y;(n), and i is the
source number. In this case, SNRgeg is defined as follows:

SNR. = 1 y 1l Lo X5 (m, )
S8 2 Nl.; I Zm{xii(mvlS)fyi(’/"l?lS)}z7

i

19)

where x;;(m, 1) and y;(m, ) are the observed signal and the separated
signal in the time domain of frame /; and time m in the frame, j
is the microphone number, N, is the number of frames, and the
obtained SNRgeg for each channel are averaged. We calculate CD
from the speech components, and it is defined as follows:

1 20 B
>y N Tog 10 {Z Z(Cxﬁ(m,l(-)("vlc)—cyi(m.,m("vlv))2}’

i I v=I1

(20)
where C(y(V,lc) is the vth cepstral coefficient of the signal (-) in
frame I, N;, is the number of frames. The obtained CD values for
each channel are averaged (‘1/2’ means an average for two chan-
nels). B is the number of dimensions of the cepstrum used in the
evaluation; we set B = 20. A small CD value indicates that the
sound quality of the separated signal is high.

CD

4.4 Simulation result of source separation

Figure 4 shows the performance of the proposed method, the x-axis
shows the number of bands, and the y-axis shows SNRe; and CD.
The y-axis of CD has been flipped because the lower value of CD
means the better sound quality. ‘CONV’ denotes the conventional
method [6] and ‘PROP’ denotes the proposed method. ‘A’ and ‘R’
denote anechoic and reverberant conditions. Figure 4 shows that
the proposed method is significantly better than the conventional
method, and that as the number of bands falls, we can confirm that
SNRgeg is improved and CD is degraded using the proposed method.
This means that the proposed method has a trade-off, and that 64 can
be the best number of bands to select.

Figure 5 shows the performance comparison of BSS. The x-
axis shows SNRgeg, and the y-axis shows CD. Again, the y-axis is
turned over because CD improves with a smaller value. ‘PROP’,
"FDICA’ and 'DUET’ denote the proposed method, FDICA and
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Figure 4: Performance of proposed method.

DUET, respectively, while ‘A’ and ‘R’ denote anechoic and rever-
berant conditions. In this comparison, the number of bands is 64. In
this experiment, we only use the time difference to perform DUET
because source powers are set equivalent to each other. In Fig. 5,
the upper right corner shows better performance, and the lower left
corner shows worse performance. Therefore, we can confirm that
the sound quality of the proposed method is better than FDICA for
SNRgeg and better than DUET for CD. This tendency is shown in
both anechoic and reverberant conditions.

Consequently, the degradation of the conventional method is
significantly improved using the proposed method from Fig. 4. The
proposed method is partially better than FDICA and DUET. In ad-
dition, as mentioned in Section 4.1, the efficiency of the proposed
method was confirmed by the computational estimate. Therefore,
from these results, coexistence of the effectiveness and efficiency
of the proposed method is confirmed.

1 &
= :
=
S X O
S 2t ;
g O PROP,A JAN
831 2 PROPR
£ 41| © FDICAA
& % FDICAR
“si o DpuETA +
+ DUETR
6 ‘ ‘ ‘ ‘ j
0 1 2 3 4 5 6 7

Segmental SNR [dB]

Figure 5: Performance comparison.

5. CONCLUSION

A blind source separation method involving lower computational
complexity was proposed. This method is based on FDICA with
band selection and the frame-wise spectral softmask derived from
the tentative separated signals. A theoretical analysis of the tentative
separated signals was given, and the proposed frame-wise spectral
softmask was only generated by the power of the tentative separated
signals. The efficiency of the proposed method is evaluated using
the computational estimate, which shows that only a small amount
of additional computation is required compared to the conventional
method. The effectiveness was evaluated via source separation sim-
ulations in the anechoic and reverberant conditions, and the sound
quality of the proposed method is much better than the conventional
method and partially better than FDICA and DUET.

The proposed method required dramatically lower computa-
tional complexity (80% lower) than the unmodified FDICA method
with the number of selected bands as 64 (1/8 of the total number of
frequency bands), while significantly improving performance over
the conventional method. Although the proposed method is prac-
tical enough, future works will include analysis and evaluation in
noisy, more typical, environments.
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