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ABSTRACT

A new precoding strategy, which considers not only the min-
imum Euclidean distance but also the number of neighbors
providing the distance dmin, is proposed. Firstly, a new pa-
rameterized form of Neighbor-dmin precoder is presented,
where all angles containing the phase are assumed to be zero
to reduce the number of difference vectors providing dmin.
The optimization problem is, therefore, less complex and the
new precoder has less distinct expressions. When a rectan-
gular QAM modulation is used at the transmitter, the general
Neighbor-dmin precoder for three independent data-streams
is proposed. This precoder has only three expressions, which
allocate power on one, two, and three virtual subchannels,
respectively. Simulation results over Rayleigh fading chan-
nels confirm a significant bit-error-rate improvement of the
new precoder in comparison with other traditional precoding
strategies.

1. INTRODUCTION

When the channel state information (CSI) is available at the
transmitter, the linear precoding technique can be used to sig-
nificantly improve the performance of a MIMO system. The
transmitted symbols are pre-multiplied by a precoding matrix
which optimizes various criteria such as maximizing the re-
ceived signal-to-noise ratio (SNR) [1], minimizing the mean
square error (MSE) [2], or maximizing the minimum singu-
lar value of the channel matrix (max-λmin) [3].

An important set of linear precoding techniques is known
as diagonal precoders. The precoding matrix is, then, diag-
onal and leads to power allocation strategies. The authors
in [4], [5] proposed a non-diagonal precoder which maxi-
mizes the minimum Euclidean distance (dmin) between two
received symbols. This precoder obtains a significant bit-
error-rate (BER) improvement in comparison with diagonal
precoders, especially when ML detection is used at the re-
ceiver. Unfortunately, the max-dmin solution is only avail-
able for a small number of independent data-streams and
low-order QAM modulations. By decomposing the trans-
mit channel into 2× 2 eigen-subchannels, the authors in [6]
presented a suboptimal precoder for large MIMO systems.
Another precoding scheme with similar structure, named X-
Codes, is proposed in [7]. These precoders achieve higher
diversity gains compared to diagonal precoders, but they are
only optimized for pair subchannels. An alternative sub-
optimal solution is also proposed in [8], but it is only suitable
for quasi-stationary MIMO channels.

One should note that not only the minimum distance but
also the average number of neighbors providing it has an
important role in reducing the bit-error-rates. In the previ-
ous work [9], we proposed a new minimum distance based

precoder, named as Neighbor-dmin. Although the expres-
sions of the new precoding strategy are simpler than those
of max-dmin precoder, the simulation results confirm a slight
BER improvement of the new precoder in comparison with
the traditional max-dmin solution. In the present paper, we
derive a general parameterized form of the Neighbor-dmin
precoder. Thanks to this representation, the optimized so-
lution for three independent data-streams is proposed. The
new precoder has only three expressions, which depend on
the order of the QAM modulation used at the transmitter.

The paper is organized as follows. In Section 2, we de-
scribe the MIMO virtual channel representation and the im-
pact of the number of vectors providing the minimum Eu-
clidean distance on the BER performance. The parameteri-
zation of the Neighbor-dmin precoder is presented in Section
3. We propose, in Section 4, three Neighbor-dmin precoding
matrices for three-dimensional virtual systems using rectan-
gular QAM-modulations. The performances of our new pre-
coder in terms of minimum distance and bit-error-rate are
discussed in Section 5. Finally, the conclusion is given in
Section 6.

2. SYSTEM OVERVIEW

2.1 Virtual channel representation
Let us consider a MIMO system with nT transmit, nR receive
antennas and b independent data-streams over a Rayleigh
fading channel. The basic system model is defined by

y = GHFs+Gν , (1)

where s and y are respectively the b×1 transmitted and b×1
received symbols vectors, ν is the nR× 1 additive Gaussian
noise vector, H is the nR×nT channel matrix, F is the nT ×b
precoding matrix, and G is the b×nR decoding matrix.

If the full CSI is known at both the transmitter and re-
ceiver, the channel can be diagonalized by using the virtual
transformation [4]. The precoding and decoding matrices
are, then, decomposed as F = FvFd and G = GdGv, and
the virtual MIMO channel is represented as

y = GdHvFds+Gdνv, (2)

where Hv is the b×b virtual channel matrix, νv = Gvν is the
b×1 transformed additive Gaussian noise vector. It is noted
that Hv is a diagonal matrix with diagonal entries σi sorted
in decreasing order, i.e. Hv = diag(σ1, ...,σb).

When an ML detection is considered at the receiver,
the decoding matrix Gd has no effect on the performance.
Hence, Gd is consequently assumed, in this paper, to be an
identity matrix of size b. The virtual system model can be
now simplified as

y = HvFds+νv. (3)
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The b× b precoding matrix Fd is designed under the
power constraint

trace{FdF∗d}= Es, (4)

where Es is the average transmit power.

2.2 Minimum Euclidean distance based precoder
Let us define Ni as the number of distances d̄i j such that d̄i j =
dmin. The minimum Euclidean distance dmin of the received
constellation is defined by

d2
min = min

sk,sl∈S,sk 6=sl
‖HvFd(sk− sl)‖2. (5)

The average error probability can be simplified as [9]

Pe ≈ 1
M

M

∑
i=1

Ni Q
(

d̄min

2
√

N0
×
√

Es

)
≈ Ndmin Q

(
d̄min

2
√

N0
×
√

Es

)
, (6)

where M is the number of all possible transmitted vectors s,
and Ndmin = 1

M ∑
M
i=1 Ni. It is obvious that we have to optimize

not only the minimum Euclidean distance but also the num-
ber of neighbors providing the distance dmin to improve the
BER performance of a MIMO system. For this reason, the
new precoding strategy considered in this paper is called as
Neighbor-dmin precoder.

3. PARAMETERIZATION OF THE NEIGHBOR-dmin
PRECODING MATRIX

Our objective is to parameterize the precoding matrix Fd
which satisfies the power constraint. By using a singular
value decomposition (SVD), the matrix Fd can be factorized
as

Fd = AΣB∗, (7)

where A and B∗ are b×b unitary matrices, and Σ is a b×b
diagonal matrix with nonnegative real numbers on the diag-
onal. Σ can be regarded as a scaling matrix, whereas A and
B∗ can be viewed as rotation matrices.

It is noted that the form of the precoding matrix Fd de-
pends on the channel characteristics. The authors in [10]
showed that we can find a precoder Fd which do not con-
tain the rotation matrix A such that performance function is
not changed.

Proposition 1: If A is assumed to be an identity matrix,
the Euclidean distances provided by two any difference vec-
tors are kept equal by changing only the scaling matrix Σ
and retaining the rotation matrix B∗.

Proof : see Appendix A.
The numerical approach shows that the optimized con-

stellation at the receiver is always obtained when some dif-
ference vectors provide the minimum Euclidean distances.
According to the proposition above, we can conclude that not
only the complexity of the optimization but also the number
of precoding expressions is reduced if the matrix A has no
influence on the precoding matrix. The parameterized form
of the Neighbor-dmin precoder is then

Fd = ΣB∗. (8)

The power constraint in (4) can be rewritten as

trace{FdF∗d}= trace{ΣΣ∗}= Es. (9)

This power constraint is then replaced by the following
decomposition

Σ =
√

Es diag{cosψ1,sinψ1 cosψ2, ..,sinψ1 sinψ2 sinψb−1}.
(10)

Theorem: Any matrix B∗, which belongs to the b-
dimensional unitary matrix group U(b), can be factorized
into an ordered product of 2b− 1 matrices of the following
form [11]

B∗ = Db−1
1 Ob−2

2 Db−2
2 . . . O1

b−1D
1
b−1 ObDb, (11)

where Db is a diagonal matrix of the form Db =
diag{eiϕ1 , . . . ,eiϕb} with ϕi ∈ [0,2π], i = 1, . . . ,b arbitrary
phases, Dk

b−k is the same diagonal matrix with first b− k en-
tries equal to unity, i.e. Dk

b−k = diag{1b−k,eiϕ ′1 , . . . ,eiϕ ′k}.
The orthogonal matrices Ob (Ok

b−k) is a product of b−1
(b− k−1) matrices of the form

Ob = J1,2 J2,3 . . .Jb−2,b−1 Jb−1,b (12)

where Ji,i+1 are b×b rotation matrices given by

Ji,i+1 =

Ii−1 0 0 0
0 cosθi sinθi 0
0 −sinθi cosθi 0
0 0 0 Ib−i−1

 , (13)

where Ii is an identity matrix of size i.
Remark: The angles that parameterize Ob are denoted as

θ1, . . . ,θb−1, then the angles of O1
b−1 are θb, . . . ,θ2b−3, etc.

and the last angle entering Ob−1
2 will be θb(b−1)/2. The matrix

Ok
b−k has the same structure as Ob

Ok
b−k =

(
Ik 0
0 Ob−k

)
. (14)

It is realized that if all the phases entering B∗ are zero, i.e.
ϕi = 0, i = 1, . . . ,b(b + 1)/2, the received constellation will
have less distances providing the minimum distance. The
property is explained by the non-rotated received constella-
tion when a rectangular Quadrature Amplitude Modulation
is used at the transmitter. Therefore, the unitary matrix B∗
can be parameterized as

B∗ = Ob−2
2 Ob−3

3 . . . O1
b−1 Ob. (15)

Thanks to this representation, we are now able to find
(b−1) angles ψi and b(b−1)/2 angles θi which give the op-
timal precoder according to the minimum distance criterion.
When b increases, not only the number of parameters but also
the received constellation size augments dramatically. For
this reason, the optimized solution is now available for only
small b virtual channels (b = 2). In the following section, we
point out the Neighbor-dmin precoder for three-dimensional
virtual systems using rectangular QAM-modulations.
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4. THREE-DIMENSIONAL NEIGHBOR-dmin
PRECODER

A three-dimensional virtual channel can be parameterized as

Hv = ρ

(cosγ1 0 0
0 sinγ1 cosγ2 0
0 0 sinγ1 sinγ2

)
, (16)

where ρ , γ1 and γ2 stand respectively for the channel gain
and channel angles. It is noted that the diagonal elements
of Hv are sorted in decreasing order, so 0 ≤ γ2 ≤ π/4 and
cosγ2 ≤ cotanγ1.

The unitary matrix B∗ in (15) can be now simplified as

B∗ =

( c1 s1c2 s1s2
−s1c3 c1c2c3− s2s3 c1s2c3 + c2s3
s1s3 −c1c2s3− s2c3 −c1s2s3 + c2c3

)
, (17)

where ci = cosθi and si = sinθi for i = 1, ..,3. The angle θi
corresponds to the scaling of the received constellation while
the parameter ψi of Σ controls the power allocation on each
virtual subchannel.

For a rectangular 4k-QAM modulation, the transmitted
symbols belong to the complex set

S =
1√
Ms
{a+bi ; a−bi ;−a+bi ;−a−bi} , (18)

where Ms = 2
3 (4k−1) and a,b ∈ (1,3, . . . ,2k−1).

The expression of the precoding matrix which optimizes
dmin for three independent data-streams can be classified into
three types which enable power on one, two, or three virtual
subchannels.

4.1 Precoder F1

The precoder is available for high dispersive channels, and
can be seen as a max-SNR design that pours power only on
the strongest virtual subchannel. In fact, this precoder trans-
forms the rectangular 4k-QAM signals on three virtual sub-
channels into a rectangular 43k-QAM on the first subchannel.
The optimized precoding matrix is given by

F1 =
√

Es

M1

4k 2k 1
0 0 0
0 0 0

 , (19)

where M1 = 16k +4k +1. The optimized dmin is provided by
the difference vector 1√

Ms
[002]T , and defined by

d2
F1

=
4

MsM1
Esρ

2 cos2
γ1. (20)

Although the distance is inferior to the minimum dis-
tance obtained by SNR-like max-dmin precoder [5], it has less
neighbors providing the distance dmin (4 compared to 5 vec-
tors of SNR-like max-dmin design).

4.2 Precoder F2

The optimized precoder which enables power on first and
second virtual subchannels (ψ2 = 0) may have many ex-
pressions. To simplify the form of F2, we present, herein,
the most important expression of F2. The expression is

available when there is a large dispersion between the two
first subchannels and the third subchannel. For rectangu-
lar QAM modulations, a numerical approach shows that
the minimum distance is provided by five difference vec-
tors: x̆1 = 1√

Ms
[0,2,0]T , x̆2 = 1√

Ms
[0,2(k-1), -2]T , x̆3 =

1√
Ms

[0,2k, -2]T , x̆4 = 1√
Ms

[2, -2(M2-k+1),2(k-1)]T , and x̆5 =
1√
Ms

[2, -2M2,2k]T , where M2 = 2k−1.

Let us note d2
x̆i

as the corresponding distance of x̆i with
i = 1, ..,5. By solving the system of equations d2

x̆1
= d2

x̆2
=

d2
x̆3

= d2
x̆4

= d2
x̆5

, we obtain all constant angles of the matrix
B∗ (confirmed by Proposition 1). The optimized angles (in
radians) of B∗ are described in Tab. 1, while the angle ψ1
which depends on the channel angles γ1 and γ2 is defined by

ψ1|(γ1,γ2) = atan
tan(ψ1|(π/4,0))

tanγ1 cosγ2
. (21)

Modulation θ1 θ2 θ3 ψ1|(π/4,0)
4-QAM 0.5083 0.1753 0.9951 0.5066

16-QAM 0.6155 0.7854 0.3876 0.7227
64-QAM 0.5538 1.0216 0.2229 0.8433
256-QAM 0.6690 1.2490 0.0977 0.6331

Table 1: Optimized angles for the precoder F2

The minimum distance is provided by the difference vec-
tor 1√

Ms
[020]T , and given by

d2
F2

= κ
2Esρ

2

Ms(2M2 +4− k)
, (22)

where κ depends on γ1 and γ2 and is defined in (29).

4.3 Precoder F3

The Neighbor-dmin precoder which pours power on all sub-
channels also has many expressions. Each expression is
available for different variations of the transmit channel. We
present, herein, a general precoding matrix for all rectangular
QAM-modulations. For every precoder has the form like (8),
this precoder provides the highest minimum distance when
the channel is small dispersive. The matrix B∗ is then de-
fined by

B∗ =
1√
3

 1 1 1
-1 1−

√
3

2
1+
√

3
2

1 −1−
√

3
2

−1+
√

3
2

 . (23)

By equalizing three difference distances provided
by x̆1 = 1√

Ms
[0,2,0]T , x̆2 = 1√

Ms
[0,0,2]T , and x̆3 =

1√
Ms

[0,2, -2]T , we obtain{
ψ2 = atan 1

tanγ2

ψ1 = atan 1
2tanγ1 cosγ2 cosψ2

(24)

The distance dmin obtained by F3 is then

d2
F3

=
8Esρ

2 cos2 γ1 sin2
γ1 cos2 γ2 sin2

γ2

4sin2
γ1 cos2 γ2 sin2

γ2 + cos2 γ1 sin2
γ2 + cos2 γ1 cos2 γ2

.

(25)
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Fig. 1 plots the received constellation provided by the
precoder F3 in the case of 4-QAM. One should note that
whenever two received vectors are close on one virtual sub-
channel, they are distant on the others (e.g. A and B).
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Figure 1: Received constellations provided by precoder F3
for QPSK modulation.

5. SIMULATION RESULTS

5.1 Range of definition
To improve the BER performance of a MIMO system, we
can choose from the three precoding matrices above the pre-
coder which provides the highest minimum Euclidean dis-
tance. For a given modulation order, by comparing the three
minimum distances in (20), (22), and (25), we obtain the
range of definition for each precoder.

The range of definition for QPSK is shown in Fig. 2. It is
observed that when the modulation order increases, the nor-
malized minimum distances (dmin/

√
4Esρ2/Ms) provided

by F1 and F2 are decreased. In other words, two precoder
F1 and F2 are less used for higher order modulations (the
range of definition changes following the arrows in Fig. 2).
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Figure 2: Range of definition for the three precoders F1,
F2, and F3 using a QPSK modulation. The arrows repre-
sent the evolution of the borders when the modulation order
increases.

5.2 Performance of Neighbor-dmin precoder
Thanks to the rectangular constellation (see Fig. 1), our new
precoder not only optimizes the minimum Euclidean distance
but also has less neighbors which provide the distance dmin.
The normalized minimum distance of the Neighbor-dmin and
other precoders are illustrated in Fig. 3. For diagonal pre-
coders, the transmit power is large enough to be allocated
on all virtual subchannels. It is observed that the minimum
distance provided by the Neighbor-dmin precoder is better
than those of WaterFilling, max-λmin [3] and MMSE [2].
Furthermore, unlike diagonal precoders, the minimum dis-
tance of Neighbor-dmin precoder is much superior to zero if
the virtual channels are large dispersive. When the chan-
nels are small dispersive, the minimum distance provided by
max-λmin is better than MMSE and Waterfilling but is really
outperformed by our new precoder.
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Figure 3: Normalized minimum distance for QPSK.

Let us consider a MIMO-OFDM system with nT = 4
transmit antennas and nR = 3 receive antennas. The transmit
channel is Rayleigh fading and the noise is additive white
Gaussian. Due to the improvement of the minimum distance
and the number of neighbors providing dmin, a large enhance-
ment of BER performance is expected. Fig. 4 illustrates the
BER performance with respect to SNR for QPSK modula-
tion. It is obvious that the Neighbor-dmin precoder has a sig-
nificant BER enhancement compared to diagonal precoders.
A gain of about 8 dB is observed (at high SNR) in compari-
son with the SNR-like max-dmin precoder [5].

6. CONCLUSION

We presented, herein, a new precoding strategy which con-
siders not only the minimum Euclidean distance in the re-
ceived constellation but also the number of neighbors provid-
ing dmin. The general parameterization of the new precoder
is described in the first part of this paper. By using a singular
value decomposition, the precoding matrix can be factorized
as the product of a scaling matrix Σ and two rotation matri-
ces A and B∗. To reduce the complexity of the optimization
and the number of precoding expressions, the unitary matrix
A is assumed to be an identity matrix. The unitary B∗ is
then factorized into a product of b−1 matrices which do not
contain the phase parameters. This parameterized form can
reduce the number of difference vectors providing the mini-
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Figure 4: Uncoded BER for MIMO-OFDM system (4,3) us-
ing QPSK modulation.

mum distance when a rectangular QAM is considered at the
transmitter.

Due to this parameterization, the general Neighbor-dmin
precoder for three-dimensional virtual systems using rect-
angular QAM-modulations is presented. The proposed pre-
coder has three different expressions which enable power on
one, two, and three virtual subchannels, respectively. It is
shown that the new max-dmin precoder offers a significant
BER improvement in comparison with traditional precoding
strategies such as max-λmin, water-filling, and minimizing
the mean square error. Furthermore, the distribution of three
precoders depends on the virtual channel characteristics. The
more dispersive the virtual subchannels, the less we use the
precoder F1 and F2.

A. PROOF OF PROPOSITION 1

Let us denote ă1, ă2, as two difference vectors which have
the same Euclidean distances. These Euclidean distances are
given by {

d2
ă1|Hv

= ‖HvΣBă1‖2

d2
ă2|Hv

= ‖HvΣBă2‖2 (26)

One should note that Σ is a diagonal matrix with real
nonnegative elements, i.e. Σ = diag(φ1, ...,φb). When
the channel varies from Hv = diag(σ1, ...,σb) to Ĥv =
diag(σ̂1, ..., σ̂b), the two distances above can be kept equal
by changing only the values of φi, i = 1, ..,b. Indeed, we
define the diagonal matrix Σ̂ with real nonnegative elements
such that

φ̂iσ̂i = κ φiσi, (27)

where κ is a constant. By substituting φi into the power con-
straint in (10), we get

n

∑
i=1

φ̂
2
i = κ

2
n

∑
i=1

φ
2
i

(
σi

σ̂i

)2

= Es (28)

or

κ =

√
Es

∑
n
i=1 φ 2

i σ2
i /σ̂2

i
. (29)

The Euclidean distance provided by ă1 is then

d2
ă1|Ĥv

= ‖ĤvΣ̂Bă1‖2

= ‖κ HvΣBă1‖2

= κ
2 d2

ă1|Hv
.

Similarly, we get

d2
ă2|Ĥv

= κ
2 d2

ă2|Hv
.

Since d2
ă1|Hv

= d2
ă2|Hv

, we have d2
ă1|Ĥv

= d2
ă2|Ĥv

. Con-
sequently, two any difference distances can be kept equal by
changing only the matrix Σ.
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