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ABSTRACT
Locating an unknown-position source using measurements
from an array of spatially separated sensors with low com-
plexity is quite necessary in many applications. In this pa-
per, a linear least squares (LLS) method, which is a best lin-
ear unbiased estimator, is proposed to estimate the unknown-
position source location based on the received signal strength
(RSS) measurements. It is proved that the performance of
our proposed method is identical to that of an existing LLS
technique but the former is more computationally efficient. A
relaxation method is also introduced to extend the LLS meth-
ods for RSS-based positioning with unknown path-loss fac-
tor. Furthermore, numerical examples are included to eval-
uate the performance of proposed algorithm by comparing
with the existing LLS approach and their theoretical position
variances as well as Cramér-Rao lower bound.

1. INTRODUCTION

Currently, source localization is a hot research topic in many
fields such as radar, sonar [1], telecommunications [2], mo-
bile communications [3] and wireless sensor networks [4].
Since the cost and power consumption are very important
factors in many applications, estimating the location of the
unknown-position source using low-cost hardware becomes
more and more interesting nowadays [5]. Time-of-arrival
(TOA), time-difference-of-arrival (TDOA), angle-of-arrival
(AOA) and received signal strength (RSS) are commonly
used measurements for positioning. Clocks with the same
time control schemes are needed for the TOA or TDOA mea-
surements, while angle measuring capability is necessary for
the AOA scheme, however, the RSS can be measured by each
receiver during normal data communication without addi-
tional hardware or energy requirements [6]. Since some low
complexity mobile receivers do not have precision instru-
ments for accurate time or bearing measurements, the RSS
information is relatively inexpensive and simple to obtain.

Many RSS-based positioning methods have been pro-
posed, such as the maximum-likelihood (ML) [7, 8],
semidefinite relaxation (SDR) [9, 10], and linear least
squares (LLS) methods [11, 12]. To the best of our knowl-
edge, the maximum-likelihood (ML) [7, 8] algorithm is hard
to implement in practice because its cost function is highly
nonlinear and contains multiple local minima and maxima.
Additionally, the SDR method, which is a suboptimal algo-
rithm [10], is with relatively high computational complexity.
In this work, our aim is to develop a computationally effi-
cient method for RSS-based positioning. In fact, a subopti-
mal but computationally efficient linear approach, which is
to reorganize the nonlinear equations constructed from the
noisy RSS information to linear, via subtracting the square
of the reference range to remove the nonlinear terms, has

been proposed [11, 12]. In this work, we contribute to po-
sitioning algorithm development and analysis given the RSS
measurements by exploiting another linearization approach
which transforms the nonlinear equations to linear via the
introduction of a range variable. It is a best linear unbi-
ased estimator (BLUE) whose performance is the same as
the LLS methods proposed in [11, 12], but is more computa-
tionally efficient. Furthermore, these two BLUE algorithms
are extended to RSS-based localization with unknown path-
loss factor.

The rest of paper is organized as follows. Section 2 is
devoted to derive the covariance matrix of the error due to
shadow fading, and then a BLUE-LLS estimator is proposed
by introducing an extra variable. The existing BLUE-LLS
estimator [11, 12] is also reviewed. In Section 3, the per-
formance of the proposed BLUE-LLS algorithm and the ex-
isting one is analyzed. Simulation results are presented in
Section 4 to evaluate the localization accuracy of the pro-
posed BLUE-LLS scheme by comparing with the existing
one method and Cramér-Rao lower bound (CRLB). Finally,
the conclusions are drawn in Section 5.

2. ALGORITHM DEVELOPMENT

Consider an array of N ≥ 3 receivers in a two-dimensional
(2-D) space. Note that extension to three-dimensional space
is straightforward. Let x= [x y]T be the source position to be

determined and xi = [xi yi]
T , i= 1,2, · · · ,N be the known co-

ordinates of the ith receiver. The distance between the source
and the ith receiver, denoted by di, is

di =
√
(x− xi)2 +(y− yi)2, i = 1,2, · · · ,N (1)

Squaring both sides of (1) yields

d2
i =−2xix−2yiy+ x2 + y2 + ki, i = 1,2, · · · ,N (2)

where ki = x2
i +y2

i . In order to construct a linear estimator, it

is common to introduce an extra variable R = x2 + y2 which
is considered to be independent of x and y, and then a linear
estimator of [x y R]T can be built according to (2) if the es-

timates of d2
i are available. By subtracting the square of the

reference range to remove the nonlinear terms x2 and y2, an-
other linear estimator can be also constructed. Selecting d2

1
as the reference, we have

d2
i −d2

1 =−2(xi − x1)x−2(yi − y1)y+ ki − k1,

i = 2,3, · · · ,N (3)

In doing so, a linear estimator of [x y]T can be built according

to (3) if the estimates of (d2
i −d2

1) are obtained [11, 12].
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2.1 RSS-based Localization Model
For RSS-based positioning systems, the primary source of
error is multipath fading and shadowing. Averaging the sig-
nal strength can help to smooth out the effects of multipath
fading, and there will still be the variability due to shadow
fading which makes it hard to find a BLUE.

The most popular channel model for RSS-based localiza-
tion is the lognormal shadowing path loss model [11] which
foresees a linear relation between the average received power
in dB and the range in logarithmic scale, plus an additional
random term to account for fading effects. After collecting
sufficient measurements, the average received power from ith
receiver can be given as:

Pi = P0 −10α log10

di

d0
+ni i = 1,2, · · · ,N (4)

where d0 is the reference distance, which is typically taken
equal to 1 meter without loss of generality; Pi and P0, all are
known in dB, are the average power of the source received
from the ith receiver and the average received power at refer-
ence distance d0, respectively. The α is the path-loss factor
and can vary from 1 to 5 depending on the propagation en-
vironment [8]. The errors {ni} are zero-mean uncorrelated

Gaussian processes with known variances {σ2
i }.

In order to construct a linear model, the estimates of d2
i

are needed. We first express (4) as:

e
−2ri

α = d2
i e−

2mi
α , i = 1,2, · · · ,N (5)

where ri = 0.1ln(10)(Pi − P0) − α ln(d0) and mi =
0.1ln(10)ni. Note that the variance of mi, denoted by λ 2

i ,

has a value of λ 2
i = 0.01(ln(10))2σ2

i . It is worth noting that

the noise component e−2mi/α is now multiplicate which is the
major challenge in obtaining a BLUE estimator to solve this
localization problem.

2.2 Development of a BLUE-LLS Algorithm
The matrix form of (2) is

Aθ = b (6)

where

A=

⎡⎢⎢⎣
−2x1 −2y1 1
−2x2 −2y2 1

...
...

...
−2xN −2yN 1

⎤⎥⎥⎦ (7)

θ = [x y R]T (8)

and

b=

⎡⎢⎢⎢⎣
d2

1 − k1

d2
2 − k2

...

d2
N − kN

⎤⎥⎥⎥⎦ (9)

Since {d2
i } are not available in practice, unbiased estimates

of {d2
i } from {ri} of (5) are needed. It is well known that

if q is a Gaussian variable with mean μ and variance σ2,
the mean and variance of eq, denoted by E{eq} and var(eq),

are eμ+σ2/2 and (eσ2 −1)e2μ+σ2
, respectively. Applying the

transformation results, the mean and variance of e−
2ri
α are

calculated as:

E

{
e−

2ri
α
}
= d2

i e
2λ2

i
α2 (10)

and

var
(

e−
2ri
α
)
= d4

i e
4λ2

i
α2

(
e

4λ2
i

α2 −1

)
(11)

Based on (10), the unbiased estimates of d2
i are:

d̂2
i = e−

2ri
α − 2λ2

i
α2 (12)

Hence, we can use the approximation form of b, denoted by

b̂:

b̂=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
e−

2r1
α − 2λ2

1
α2 − k1

e−
2r2
α − 2λ2

2
α2 − k2

...

e−
2rN
α − 2λ2

N
α2 − kN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13)

to replace b. It is obvious that E{b̂} = Aθ which corre-
sponds to the linear unbiased data model.

Additionally, with the use of (11) and (12), the variance

of d̂2
i is computed as:

var(d̂2
i ) = var

(
e−

2ri
α
)(

e−
2λ2

i
α2

)2

= d4
i

(
e

4λ2
i

α2 −1

)
(14)

According to (14), the noise covariance for b̂, denoted by
C

b̂
, is a diagonal matrix of the form:

C
b̂
= diag

(
d4

1

(
e4λ 2

1 /α2 −1
)
,d4

2

(
e4λ 2

2 /α2 −1
)
,

· · · ,d4
N

(
e4λ 2

N/α2 −1
)) (15)

Employing the inverse of C
b̂

as the weighting matrix, the

BLUE estimate of θ , denoted by θ̂ , is obtained by finding
the minimum of the following cost function:

J(θ̃) =
(
Aθ̃ − b̂

)T
C−1

b̂

(
Aθ̃ − b̂

)
(16)

where θ̃ is the variable for θ . The solution for (16) is [13]:

θ̂ =
(
ATC−1

b̂
A
)−1

ATC−1

b̂
b̂ (17)

As {d2
i } are not available, the practical form of C−1

b̂
is given

as:

C−1

b̂
= diag

⎛⎝ e
4r1
α

1− e−
4λ2

1
α2

,
e

4r2
α

1− e−
4λ2

2
α2

, · · · , e
4rN
α

1− e−
4λ2

N
α2

⎞⎠
(18)
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which is obtained by substituting {d2
i } with {d̂2

i } in (15).
The BLUE position estimate, denoted by x̂1, is simply ex-

tracted from the first and second entries of θ̂ , that is,

x̂1 = [[θ̂ ]1 [θ̂ ]2]T (19)

According to BLUE, the covariance matrix for θ̂ , denoted by
Cθ̂ , is [13]:

Cθ̂ =
(
ATC−1

b̂
A
)−1

(20)

The variances for the estimates of x and y are thus given
by the (1,1) and (2,2) entries of Cθ̂ , respectively, that is,

the mean square position error (MSPE) for x̂1, denoted by
MSPE(x̂1), is

MSPE(x̂1) = [Cθ̂ ]1,1 +[Cθ̂ ]2,2. (21)

As the relationship of R = x2+y2 is not exploited in (17), the
BLUE positioning accuracy cannot attain the CRLB.

2.3 Comparison with Existing BLUE-LLS Algorithm
The existing BLUE-LLS algorithm [11, 12] is based on (3)
where the estimates of (d2

i − d2
1) are exploited. The matrix

form of (3) is

Gx= h (22)

where

G=−2

⎡⎢⎢⎣
x2 − x1 y2 − y1

x3 − x1 y3 − y1

...
...

xN − x1 yN − y1

⎤⎥⎥⎦ (23)

and

h=

⎡⎢⎢⎢⎣
d2

2 −d2
1 − k2 + k1

d2
3 −d2

1 − k3 + k1

...

d2
N −d2

1 − kN + k1

⎤⎥⎥⎥⎦ (24)

Similar with the proposed BLUE-LLS algorithm, the unbi-

ased approximation of h, denoted by ĥ, is:

ĥ=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
e−

2r2
α − 2λ2

2
α2 − e−

2r1
α − 2λ2

1
α2 − k2 + k1

e−
2r3
α − 2λ2

3
α2 − e−

2r1
α − 2λ2

1
α2 − k3 + k1

...

e−
2rN
α − 2λ2

N
α2 − e−

2r1
α − 2λ2

1
α2 − kN + k1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(25)

and the covariance matrix of ĥ, denoted by C
ĥ

, is

C
ĥ
= diag

(
d4

2

(
e

4λ2
2

α2 −1

)
,d4

3

(
e

4λ2
3

α2 −1

)
, · · · ,

d4
N

(
e

4λ2
N

α2 −1

))
+d4

1

(
e

4λ2
1

α2 −1

)
1N−11

T
N−1

(26)

where 1N denotes the N × 1 vector with all elements 1.
Similarly, the practical form of C

ĥ
is constructed by using

e−2ri/α−2λ 2
i /α2

to approximate d2
i according to (12).

The estimated x based on (22), denoted by x̂2, is

x̂2 =
(
GTC−1

ĥ
G
)−1

GTC−1

ĥ
ĥ (27)

Furthermore, the covariance matrix for x̂2, denoted by Cx̂2
,

is

Cx̂2
=
(
GTC−1

ĥ
G
)−1

(28)

Thus, the MSPE for x̂2, denoted by MSPE(x̂2), is

MSPE(x̂2) = Tr(Cx̂2
). (29)

where Tr is the trace operator.

2.4 Extension to Unknown Path-loss Factor
When α is not known a priori, we propose to start with an
estimate α̂ ∈ [1,5] to compute x̂1 of (19) or x̂2 of (27). We
then employ the position estimate to construct the distance

estimates {d̂i} according to (1). A more accurate estimate of
α is then obtained using weighted least squares (WLS) as:

α̂ = argmin
α̃

N

∑
i=1

[
ri + α̃ ln(d̂i)

]2

λ 2
i

=− ∑N
i=1 ri ln(d̂i)/λ 2

i

∑N
i=1

[
ln(d̂i)

]2
/λ 2

i
(30)

We repeat the updates of the position estimate and (30) in an
alternate manner for a few iterations until parameter conver-
gence.

3. PERFORMANCE ANALYSIS

The relationships between the proposed BLUE-LLS method
and the existing one are discussed in this section.

3.1 Performance Estimation
In order to analyze the relationship between (20) and (28),
we first define two matrix [14], namely, LT = [I2 02×1] and
P = [−1N−1 IN−1], here I2 is the 2×2 identical matrix and
02×1 is the 2×1 zero matrix. We have:

G=PAL

C
ĥ
=PC

b̂
PT (31)

Thus, the covariance matrix for x̂2, which is given in (28) of
the existing BLUE algorithm, can be expressed as

Cx̂2
=
[
LTATPT (PC

ĥ
PT )−1PAL

]−1
(32)

Furthermore, the covariance matrix for the estimates of x and
y in the proposed BLUE-LLS algorithm can be expressed as

LT (ATC−1

b̂
A)−1L, which corresponds to the upper left 2×

2 sub-matrix of (ATC−1

b̂
A)−1

(ATC−1

b̂
A)−1 =

[
LTATC−1

b̂
AL LTATC−1

b̂
1N

1T
NC

−1

b̂
AL 1T

NC
−1

b̂
1N

]−1

(33)
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With the use of the partitioned inversion formula and

1T
NC

−1

b̂
1N = Tr(C−1

b̂
), the upper left 2×2 sub-matrix of Cθ̂ ,

LT (ATC−1

b̂
A)−1L, can be computed as

LT (ATC−1

b̂
A)−1L

=

[
LTAT

(
C−1

b̂
−

C−1

b̂
1N1

T
NC

−1

b̂

Tr(C−1

b̂
)

)
AL

]−1
(34)

Using the property of P1N = 0(N−1)×1, we construct an

idempotent matrix S ∈ R
N×N , which has the form of

S=
C

−1/2

b̂
1N1

T
NC

−1/2

b̂

Tr(C−1

b̂
)

+C
1/2

b̂
PT (PC

b̂
PT )−1PC

1/2

b̂

(35)

Since rank(S)=Tr(S)=N, employing the full rank property
of S as well as idempotent property of S(IN −S) = 0N×N
yield

S= IN (36)

Pre-multiplying and post-multiplying both sides of (35) by

C
−1/2

b̂
with the use of (36), we obtain

PT (PC
ĥ
PT )−1P=C−1

b̂
−

C−1

b̂
1N1

T
NC

−1

b̂

Tr(C−1

b̂
)

(37)

From (32), (34) and (37), it is obvious that the estimation
performance of our proposed BLUE-LLS algorithm is the
same as that of the existing one.

3.2 Computational Complexity
Since the covariance matrix of approximation error in our
proposed method C

b̂
is a diagonal matrix, the weighting ma-

trix can be easily calculated with O(N) multiplications, while

the inverse of C
ĥ

needs O(N2) multiplications [14]. There-

fore, the complexity of our proposed method is O(N) while

that of the existing algorithm is O(N2), which means that our
proposed method is more computationally efficient.

4. NUMERICAL EXAMPLES

MATLAB simulations are carried out to evaluate the perfor-
mance of the proposed BLUE-LLS algorithm by comparing
with the existing one [11, 12] as well as CRLB [15]. We con-
sider a 2-D geometry of 8 receivers with known coordinates
at (0,0), (0,100), (100,0), (100,100), (25,25), (75,25),
(75,75) and (25,75) in a 100×100 area. The errors {ni} are
zero-mean white Gaussian processes with identical variances
of σ2

i = σ2. All results are averages of 10000 independent
runs.

Figure 1 plots the MSPEs of the proposed BLUE-LLS
and existing one versus σ2 ∈ [0.01,10] at known path-loss
factor α = 3. The theoretical variances of the position es-
timates of the LLS estimators, given by (21) or (29) are in-
cluded as well as CRLB. The source is at x = [30 80]T . It
is seen that the MSPEs of the proposed and existing meth-
ods agree with (21) and (29) when the disturbance is suffi-
ciently small, namely, σ2 < 1, and are around 1.2 times of

the CRLB which indicate their suboptimality. It is worthy
to point out that the MSPEs of these two methods are not
numerically identical. Figure 2 shows their MSPEs versus
α ∈ [1,5] at σ2 = 0.1. We again see the suboptimality of
the proposed and existing schemes. The localization accu-
racy increases with α , which is also indicated by the CRLB.
Moreover, the equivalence between the proposed and exist-
ing algorithms is demonstrated. The first test is repeated by
considering the source position is uniformly chosen within
the square bounded by the last four receivers for each trial
and the result is shown in Figures 3. We see that the findings
are similar to those of Figure 1. Finally, The third test is re-
peated with unknown α and we start with α̂ = 5 while the
actual path-loss factor is α = 3. The results of the proposed
relaxation scheme for both algorithms with 5 iterations are
plotted in Figure 4. It is seen that MSPE gaps between both
estimators and CRLB are very small.

5. CONCLUSIONS

A best linear unbiased estimator approach for received sig-
nal strength (RSS)-based localization is proposed in this pa-
per. Both performance analysis and simulation results show
that our proposed method and the existing one have identical
performance while the former is more computationally effi-
cient, that is, the former is in order of the number of receivers
N while the latter is in order N2. Furthermore, a relaxation
method is introduced to extend the LLS approach to solve
the RSS-based positioning problem with unknown path-loss
factor.
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Figure 1: Mean square position error versus σ2 at x =
[30 80]T with α = 3
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Figure 2: Mean square position error versus α at x =
[30 80]T with σ2 = 0.1
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Figure 3: Mean square position error versus σ2 with random
x and α = 3
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Figure 4: Mean square position error versus σ2 with random
x and unknown α
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