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ABSTRACT

A novel time domain constrained multimodal approach for con-
volutive blind source separation is presented which incorporates ge-
ometrical 3-D cordinates of both the speakers and the microphones.
The semi-blind separation is performed in time domain and the con-
straints are incorporated through an alternative least squares opti-
mization. Orthogonal source model and gradient based optimiza-
tion concepts have been used to construct and estimate the model
parameters which fits the convolutive mixture signals. Moreover,
the majorization concept has been used to incorporate the geometri-
cal information for estimating the mixing channels for different time
lags. The separation results show a considerable improvement over
time domain convolutive blind source separation systems. Having
diagonal or quasi diagonal covariance matrices for different source
segments and also having independent profiles for different sources
(which implies nonstationarity of the sources) are the requirements
for our method. We evaluated the method using synthetically mixed
real signals. The results show high capability of the method for sep-
arating speech signals.

1. INTRODUCTION

Blind source separation (BSS) is a technique to estimate unknown
source signals from their mixtures without any prior knowledge
about the sources or the medium. In some applications, signals
are mixed through a convolutive model and this makes the BSS a
difficult problem. A number of reviews on convolutive BSS (CBSS)
as addressed in [1], have been published recently. There are three
major approaches for solving the convolutive BSS problem; (i) time
domain BSS, (ii) frequency domain BSS, where the convolutive
problem is transferred to frequency domain whereby the convolu-
tion operation changes to multiplication and (iii) the approach which
uses time-frequency domain in the sense of doing adaptation in both
time and frequency domains. This method, however, is computation-
ally inefficient since frequent switching between time and frequency
domains becomes necessary [2]. A time domain CBSS approach has
been recently developed using tensor factorization and majorization
concepts [3]. This method divides the mixture signals into different
time segments and then defines a tensor model for the segmented
source signals. It then uses majorization concept for estimating the
orthogonal part of source tensor model and parallel factor analysis
(PARAFAC) for the other parts of tensor model. The majorization
process, which is used by this method to estimate the orthogonal
part of tensor model, is computationally expensive. Moreover, the
estimated sources by this method are normally colored (filtered) ver-
sion of the original sources and respectively the estimated mixing

channels (for different lags) are not sometimes physically meaning-
ful for typical applications like separation of speech signals recorded
in a room by solving the so called cocktail party problem. On the
other hand, there are some multi modal research works which deal
with CBSS problem in frequency domain and take the geometri-
cal information of the speakers and microphones (provided by 3-D
video based tracker) into account to improve the performance of
separation process [4],[5],[6]. In this paper the proposed time do-
main approach of previous work [3] is computationally improved
by substituting majorization based optimization with a faster gra-
dient based approach. Moreover, in order to improve the quality
of separated sources and faster convergence the geometrical infor-
mation has been incorporated with a majorization based method to
estimate the mixing channels for different lags. Here, it is assumed
that the sources are independent or more specifically the covariance
matrix of the source signals and all their reasonable size segments
are diagonal. Consider the following instantaneous mixing system:

xi(t) =

Ns∑
j=1

aijsj(t) + vi(t), i = 1, · · · , Nx t = 0, · · · , N − 1

(1)

where N is the number of time samples, Ns and Nx are respectively
the number of sources and sensors, aij are the elements of mixing
matrix A, and xi(t), sj(t), and vi(t) are ith sensor, jth source, and
ith noise signals at time instant t. Using matrix notations the above
formulation can be represented as follows:

X = SAT +V (2)

where X∈RN×Nx , S ∈ R
N×Ns , and V ∈ R

N×Nx denote respec-
tively the matrices of observed signals, source signals, and noise.
A∈RNx×Ns is the mixing matrix. Recovering sources from the ac-
quired mixtures has been investigated by incorporating different as-
sumptions about the sources or mixing systems. The approach pro-
posed here relies on orthogonality of the sources for different time
segments. A simple temporal segmentation procedure has been de-
veloped to divide the signal X to K segments with/without overlap
and with segment size of Nk . Having columnwise orthogonal Sks is
an important criterion which must be considered. So, after temporal
segmentation of X the main model changes to:

Xk = SkA
T +Vk;∀ k = 1, . . . ,K

ST
k Sk = D2

k

(3)

where Xk ∈ R
Nk×Nx and Sk ∈ R

Nk×Ns are mixture and source
signals and Dk is diagonal/semi-diagonal for each segment k. For
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simplicity, we ignore the noise term Vk and, also based on orthog-
onality of Sk, each orthogonal Sk can be decomposed into one or-
thonormal matrix Pk and one diagonal matrix Dk, which absorbs
the norm of different sources at each segment k. This decompo-
sition can be considered as a specific case of Polar decomposition
[7] which decomposes each Sk by product of one orthonormal Pk

and one positive semidefinite (PSD) matrix Dk, here the Dk is con-
sidered as a diagonal/semi-diagonal PSD matrix. So, based on the
above decomposition the source model can be rewritten as:

Sk = PkDk;∀ k = 1, . . . ,K

PT
k Pk = INs

(4)

where INs ∈ R
Ns×Ns is an identity matrix. Actually the above for-

mulation tries to define a structured model for source signals Sk.
Above source model is independent of the mixing system and is
valid for convolutive mixing systems as well. This source model
has been used to define a structured model for convolutive mixture
signals and ultimately separation of the sources and estimation of the
mixing channels for different lags. A majorization based method is
developed for semi-blind estimation of the mixing gains using the
existing geometrical information of speakers and microphones.

The remainder of the paper is structured as follows. In Section
2 the problem formulation is described. In Section 3 estimation of
the model parameters is provided. In Section 4 the results of ap-
plying the method to simulated data are provided. Finally Section 5
concludes the paper.

2. CONVOLUTIVE MIXING PROBLEM FORMULATION

Let’s investigate the CBSS problem based on the orthogonal model
(4). In many practical situations the signals and their reflections
reach the sensors with different time delays. In a homogeneous
medium such as air, the corresponding delay of direct path between
source j and sensor i, in terms of number of samples, is directly pro-
portional to the sampling frequency and conversely to the speed of
sound in the medium, i.e. τij ∝ dijfs

C
, where dij , fs, and C are re-

spectively, the distance between source j and sensor i, the sampling
frequency, and the speed of sound. Similarly, the attenuation is re-
lated to the square of distances as aij ∝ kij

d2ij
where kij is dependent

on the directionality patterns of jth source and ith sensor. In a real
case (e.g. a real room) there are always indirect paths between the
sources and sensors due to the wall reflections which are not easily
measurable. However, the direct path information can be achievable
using the geometries of the sensors and sources using video. A gen-
eral formulation of the CBSS for each time segment of k (ignoring
the noise part) can be written as:

xki(t) =

Ns∑
j=1

M−1∑
τ=0

skj(t− τ )aij(τ );∀ i = 1, . . . , Nx (5)

where aij(τ ) are the elements of mixing matrix Aτ at different time
lags τ and M is the maximum number of lags. From geometrical
information a few largest aij(τ ) related to direct paths are available
as aij(τij) for i = 1, ..., Nx, j = 1, ..., Ns. The above convolutive
mixing model can be formulated using matrix notations as follows:

Xk =
M−1∑
τ=0

ΞτSkA
T
τ ;∀ k = 1, . . . ,K (6)

where Ξτ denotes a shift matrix as shifting operator applied to Sk

[8]. Regarding (4) and after substituting Sk with its orthogonal
model the final convolutive model of the mixture signals Xk can
be shown as:

Xk =

M−1∑
τ=0

ΞτPkDkA
T
τ ;

PT
k Pk = INs

(7)

Define the overall cost function J for our optimization problem as:

J(Pk,Dk,Aτ ) =

K∑
k=1

||Xk −
M−1∑
τ=0

ΞτPkDkA
T
τ ||2

subject to PT
k Pk = INs

(8)

Two sets of parameters (P1, ...,PK) and (D1, ...,DK) vary for dif-
ferent ks whereas, (A0,A1, ...,Aτ ) are fixed for all ks. In order
to approach to a unique solution (subject to estimation of colored
sources and permutation ambiguities) of the above problem one ex-
tra constraint is imposed on those parameters which are not fixed
for all segments. Orthogonality of the source profiles is a constraint
that is imposed on Dks for all the segments. This constraint physi-
cally means that the activity of the sources are relatively sparse along
the segments rather than being sparse for each time sample. In this
work no constraint is imposed on the mixing channels Aτ . How-
ever, having fixed Aτ s for all segments can be considered as a weak
constraint on Aτ s. In order to fit the model of mixtures (7), alternat-
ing optimizations, are developed for estimation of the three sets of
parameters (A0,A1, ...,Aτ ), (P1, ...,PK), and (D1, ...,DK).

3. ESTIMATION OF THE MODEL PARAMETERS

The parameters of problem (8) can be estimated using three alter-
nating minimizations for estimation of the three sets of existing pa-
rameters separately. The following procedures introduce the min-
imizing processes for estimation of (A0, ...,Aτ ) and each set of
(D1, ...,DK) and (P1, ...,PK) parameters.

3.1. Estimation of Aτ s

Assume Pk and Dk for k = 1, . . . ,K are known. Then, to estimate
Aτ the term

∑M−1
τ=0 can be converted to matrix multiplication as:

Xk =

[Ξ0PkDk,Ξ1PkDk, · · · ,ΞM−1PkDk]

⎡
⎢⎢⎢⎣

AT
0

AT
1

...
AT

M−1

⎤
⎥⎥⎥⎦ (9)

After defining new variables Zk and A as

Zk = [Ξ0PkDk,Ξ1PkDk, · · · ,ΞM−1PkDk]

A =

⎡
⎢⎢⎢⎣

AT
0

AT
1

...
AT

M−1

⎤
⎥⎥⎥⎦ (10)
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every Xk can be modeled as Xk = ZkA. By stacking X1, . . . ,XK

and Z1, . . . ,ZK in two new super-matrices a single linear equation
can be written as: ⎛

⎜⎜⎜⎝
X1

X2

...
XK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Z1

Z2

...
ZK

⎞
⎟⎟⎟⎠A (11)

The super mixing matrix for different lags, A, can be estimated as
follows:

A = Z†X (12)

where X and Z are super-matrices made by stacking Xks and Zks
respectively and † refers to the pseudo-inverse operation. After rear-
ranging A, estimation of Aτ for each τ will be available. This con-
cept has been used to estimate the mixing gains blindly [3]. When
some geometrical data are available then, it can be assumed that mix-
ing gains are partially known (at least the gains for the direct paths
between speakers and microphones). So, a semi-blind process can
benefit from the existing geometrical information. Next subsection
shows how majorization concept can be used to develop an itera-
tive method which takes the existing information of channels into
account to set a semi-blind process for estimation of A.

3.1.1. Semi-Blind Geometrically Constrained estimation of Aτ

In the presence of geometrical information (11) can be converted to
a minimization problem using a Lagrangian penalty term λ as:

J(A) = ||X− ZA||2F + λ||Ã−A||2F (13)

where Ã includes the existing geometrical information. In order to
make a balance between the error of constraint part and major part
of cost function the above minimization problem can be changed to:

J(A) = (1− λ)||X− ZA||2F + λ||ZÃ− ZA||2F (14)

where ||X||2F = tr(XTX) using trace function. The majoriza-
tion concept can be employed to minimize (14). This can be ap-
proached by means of majorizing this function by one having a sim-
ple quadratic shape whose minimum is easily found. Moreover,
it is shown that the majorization based process further minimizes
the main function and makes the algorithm to monotonically con-
verge iteratively [9]. Using trace function the minimization problem
changes to:

J(A) = β − 2trWA +
2∑

m=1

tr
(
ΦmATA

)
(15)

where W = ((1 − λ)2XTZ + λ2ÃTZTZ), Φ1 = (1 −
λ)2ZTZ,Φ2 = λ2ZTZ, and β = ||(1 − λ)X||2F + ||λZÃ||2F
a constant that does not depend on A. The update of A for mini-
mizing J(A) is given as [9]:

A← A−
(

2∑
m=1

αm

)−1( 2∑
m=1

ΦmA−WT

)
(16)

where αm is a scalar equal or greater than the largest singular value
of Φm [9].

3.2. Estimation of Pks

At this stage it is assumed that Aτ s and Dks are available for all
k and τ and estimation of all Pks is required. Based on the model
Xk =

∑M−1
τ=0 ΞτPkDkA

T
τ it is necessary to find orthonormal Pks

to fit the model at each segment k. This problem can be solved for
each k separately. So, after defining a new variable Gτ = DkA

T
τ a

local minimization problem for each k can be defined as:

J(Pk) = ||Xk −
M−1∑
τ=0

ΞτPkGτ ||2

subject to PT
k Pk = INs

(17)

without having orthogonality constraint on Pk there is a closed so-
lution for Pk as:

vec (Pk) =

(
M−1∑
τ=0

GT
τ ⊗Ξτ

)†

vec (Xk) (18)

where vec(.) is matrix to vector converter operator and ⊗ denotes
Kronecker product. Because of high dimensionality of Ξk this so-
lution is computationally expensive and also does not support the
orthogonality constraint of Pk. Moreover, in our blind process, the
exact Gτ s are not available and the above exact solution may force
the algorithm to converge to a local minimum. In order to overcome
these problems an iterative approach has been developed. One stan-
dard iterative solution of unconstrained version of (17) is proposed
in [10]. Using this iterative concept the solution of constrained prob-
lem can be proposed as:

Q =Pk +
μ

M

(
M−1∑
i=0

ΞT
i

(
Xk −

M−1∑
τ=0

ΞτPkGτ

)
GT

i

)

Pk ← UVT

(19)

where U and V include orthonormal left and right singular vectors
ofQ using singular value decomposition (SVD) asQ = USVT and

μ ≤
(∑M−1

τ=0 ||Gτ ||2
)−1

. In above formulation Q is the solution

of unconstrained version of (17) and it is computed using iterative
gradient minimization. However, updation of Pk as Pk ← UVT

imposes the orthogonality constraint. There is another standard iter-
ative solution for the above constrained problem using majorization
concept which is computationally more intensive than the proposed
gradient based method [9],[3].

3.3. Estimation of Dks

Estimating Dks as part of the main model can be performed for each
k separately. Similar to the solution given in (18) the unconstrained
estimation of Dk called Mk can be shown by:

vec (Mk) =

(
M−1∑
τ=0

Aτ ⊗ΞτPk

)†

vec (Xk) (20)

where the diagonal elements of Mk are the estimation of diagonal
elements of Dk. This solution, because of having smaller matrices,
is not computationally as expensive as (18) and non-iterative solu-
tion can be employed. Moreover, in order to have more relatively
unique estimations an orthogonality constraint is imposed between
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the vectors including the diagonal elements of all Dks. Figure 1
shows typical profiles (absolute value of diagonal elements of Dks)
of speech signals. Actually, the orthogonality is applied to the activ-
ity of the sources along time segments called their profiles. For this,
the diagonal elements of Mks for all k = 1, ..., K must be stacked
in matrix C ∈ R

K×Ns and then each row of the orthogonalized ver-
sion of C will be the final estimation of diagonal elements Dks as
below:

Dk = diag(mkRΣ−1RT ) (21)

where diag(x) makes a diagonal matrix with diagonal elements
equal to x elements, mk ∈ R

1×Ns is a horizontal vector includes
the diagonal elements of Mk, and R, Σ include the right singu-
lar vectors and singular values of C respectively. An alternative
way for estimating Dks also can be implemented using Khatri-
Rao product to estimate mk, only the diagonal elements of Mk,
directly. However, Kronecker based method has better speed of
overall convergence.

The final algorithm for alternating minimization process for es-
timation of all the parameters is shown in Algorithm 1. In the next

Algorithm 1 Semi-blind source separation parameter estima-
tion using alternating minimization

Step1 : Initialize all of the model parameters.
Step2 : Estimation of Pk using (19) for all k = 1, ...,K .
Step3 : Estimation of Aτ s using (16).
Step4 : Estimation of Dks using (20) and (21).
Step5 : Check the convergence rate σ = ||Jnew −
Jold||/||Jold|| if σ > ε, go to Step2 till convergence

section this algorithm will be applied to some nonstationary signals
such as speech signals. These signals can be considered mutually
orthogonal for certain size segments. Moreover, their profiles are
normally independent of each other which provides orthogonality of
profile signals as the second requirement for the proposed method.

4. SIMULATION RESULTS

In this section the proposed method is evaluated for separation of
speech sources from their convolutive mixtures in a simulated room
with dimensions (2, 2, 2). Three speech signals (from one female and
two males) are chosen to be mixed convolutively. The coordinates
of microphones m1, m2, m3 are respectively (0, 0, 0), (0, .50 ,0), (0,
.50, .50), and the coordinates of sources s1, s2, s3 are ( .47, .01, .01),
(.47, .49, .01), (.47, .49, .49), respectively. Reflection coefficient of
walls are chosen as [0.9 0.9 0.7 0.7 0.6 0.6]. The audio signals are
sampled at 8 kHz. The received signals from the microphone ar-
ray are computed using RoomSim software [11]. The reverberation
time is measured about 18 millisecond (140 taps). To build up the
segmented data from the mixtures a temporal segmentation scenario
has been used with segment size of Nk = 300 without overlap and
maximum number of lags to build up the tensor model is selected
as 140 (M = 140). The initial values for mixing gains Aτ s are
considered as zero except for τij as aij ∝ kij

d2ij
for i, j = 1, ..., Ns

which can be computed using Roomsim (when all reflection coeffi-
cients of walls are considered as zero). All other parameters of the
model are randomly initialized. λ is initialized by 0.7 and it is grad-
ually decreased during the iterations by λ = 0.7e−.05j where j is

the iteration counter. The error decreased monotonically and the op-
timization converged after 94 iterations. The original and estimated
profiles for different sources are shown in Figure 1. It can be seen
that the estimated profiles have closely followed the original ones.
Also, a completely blind version of the above algorithm is applied to
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Fig. 1: Original and separated profiles (Dk’s) of the source
signals .

the same convolutive mixture signals to compare the results. Com-
paring with the completely blind algorithm, the estimated mixing
channels (impulse responses between speakers and microphones) are
more correlated with the actual ones. Figure 2 shows the actual (in
simulated room), shortest path, blindly estimated, and semi-blindly
estimated impulse response between the third source (s3) and sec-
ond microphone (m2). The separated sources can be estimated by
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Fig. 2: Actual on top left, shortest path on top right, semi-
blindly estimated on bottom left, and on bottom right blindly
estimated impulse response between s3 and m2.

stacking Ŝk = PkDk matrices. Because of blind estimation of
channels Aτ s (except for points available from the geometrical in-
formation) there are different scaling ambiguities for different lags
and this causes the separated sources to be the filtered versions of the
original sources. Because of having filtered version of the sources,
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plots.

Table 1: Correlation between original and separated signals
using the proposed method.

Correlation Separated 1 Separated 2 Separated 3
Original 1 0.682 0.029 -0.045
Original 2 0.0131 0.768 0.026
Original 3 0.033 0.022 0.7373

measuring the signal to interference ratio (SIR) for lag zero may not
be an accurate performance measure (specially for completely blind
version of the algorithm). So, in order to measure the performance,
the cross correlation of lagged versions of each normalized estimated
source with all normalized original sources has been measured. Ta-
ble 1 shows the maximum cross correlation (for all lags between -M
to M) measured between the separated and original sources using the
proposed semi-blind method. Table 2 shows the maximum correla-
tion measured between the separated and original sources using the
completely blind version of the above method. Figure 3 shows the
normalized original signals, the normalized separated signals using
the completely blind method, and our proposed semi-blind method,
and the mixture signals.

5. CONCLUSIONS

This paper improved the recently developed time domain CBSS us-
ing an orthogonal signal model which is defined for source signals
and then used to define a signal model for convolutive mixture sig-
nals. A computationally efficient gradient based approach is devel-

Table 2: Correlation between original and separated signals
using blind method.

Correlation Separated 1 Separated 2 Separated 3
Original 1 0.388 -0.066 0.057
Original 2 -0.029 -0.256 -0.069
Original 3 -0.046 0.100 -0.337

oped to estimate the orthogonal part of model (Pks). Moreover, the
majorization concept is employed to impose the existing geomet-
rical information and developing a semi-blind time-domain CBSS.
Although, the estimated channels by the proposed method are not
unique but compared to the blind algorithm they are more correlated
to actual channels. To evaluate the performance of the system the
mixing channels of a simulated room are used to mix the speech sig-
nals. The results show the high performance of the method compared
with those of completely blind CBSS method (using (12), rather than
(16), to estimate the channels) to achieve higher correlation values
for the same speaker and lower correlation values for different speak-
ers between the separated and original signals.
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