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ABSTRACT

This work considers the semi-parametric estimation of sparse spec-
troscopic signals, aiming to form a detailed spectral representation
of both the frequency content and the spectral line widths of the oc-
curring signals. Extending on the recent FOCUSS-based SLIM al-
gorithm, we propose an alternative prior for a Bayesian formulation
of this sparse reconstruction method, exploiting a proposed suitable
prior for the noise variance. Examining three common models for
spectroscopic signals, the introduced technique allows for reliable
estimation of the characteristics of these models. Numerical sim-
ulations illustrate the improved performance of the proposed tech-
nique.

1. INTRODUCTION

The problem of finding an appropriate representation for signals ex-
hibiting various forms of spectral sparsity is commonly occurring in
a variety of fields, such as, for example, in characterizing and ana-
lyzing several forms of spectroscopic signals, or in the detailing of
broadband sources impinging on an array of sensors. Such signals
can often be viewed as consisting of a collection of broad spectral
lines, where the line widths are typically of notable interest. For
instance, in a communication scenario, the line width may carry
information of the angular or Doppler spread of the sources (see,
e.g., [1, 2]). Similarly, in the analysis of nuclear quadrupole reso-
nance (NQR) signals from various forms of solid-state explosives,
narcotics, and drugs, the line width detail important features of the
decay of the spectral lines, allowing for a more accurate identifica-
tion of such substances (see, e.g., [3]). In some applications, the
shape of the spectral line may in itself also be of notable interest.
For example, in the above noted spectroscopic application, it is rea-
sonable to assume that the line shape may allow for the identifica-
tion of the manufacturing plant of an explosive or drug containing
a given active substance but being produced in different factories,
a problem of significant interest, e.g., in trying to detect and trace
counterfeit or substandard medicines. In this work, we will exam-
ine spectroscopic signals exhibiting spectral sparsity in some form,
although the results can relatively easy be recast to a variety of re-
lated problems. In particular, the work examines the possibility to
treat a collection of decaying spectral lines as sparse components,
with a set of parameters detailing both the frequency and the decay
of the spectral line. The work may in this sense be viewed as an
extension of our recent contribution detailing spectroscopic signals
using the damped IAA-style algorithm presented in [4]. Herein,
we will take an approach based on the sparse reconstruction of the
signal components, basing our algorithm on the framework devel-
oped in [5,6]. Rewriting the FOCUSS-based SLIM algorithm using
a Bayesian framework clarifies the inference of the assumed prior
on the noise variance. Here, exploiting this insight, we propose an
alternative, more reasonable, prior, which we then show only im-
ply a minor, but significant modification, of the SLIM algorithm.
The proposed prior exploits that spectroscopic signal generally de-
cay quite rapidly, thereby allowing for a reasonable estimate of the
noise variance by simply examining measurements from when the
signal of interest can be assumed to have decayed sufficiently. Al-
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ternatively, such an estimate can be obtained from prior measure-
ments or calibrations, or by exploiting knowledge of the measure-
ment setup. Using the so-obtained a priori estimate, we propose the
use of a prior behaving close to what can be expected of that of the
variance estimate, but having the benefit of dramatically simplify-
ing the resulting calculations.

The rest of the paper is organized as follows: in the following
section, we present the problem formulation and its connection to
sparse reconstruction. In Section 3, the related FOCUSS [5] and
SLIM [6] algorithms for solving the sparse reconstruction problem
are presented in a Bayesian framework. Then, in Section 4, we
propose an extension of the SLIM algorithm by utilizing the as-
sumed availability of a prior estimate of the noise variance and its
reliability. Finally, Section 5 presents numerical evaluations of the
performance of the proposed algorithm.

2. PROBLEM FORMULATION

Let y(tn) ∈ C, for n = 0,1, . . . ,M, represent a data sequence under
consideration, where tn are consecutive but not necessarily evenly
spaced sample times, and where the data may be considered to be
formed as

y(tn) =
s

∑
k=1

ak f (tn,θk)+w(tn), (1)

where f is a known complex-valued function, θk ∈ Θ ⊂ R
mk is an

unknown parameter vector, ak ∈ C the amplitude associated with
each component in the sum, and w(tn) is a (possibly non-white)
circularly symmetric Gaussian noise with covariance matrix Σw.
Common spectroscopic examples of functions detailing some or all
of the signal components of a typical signal include the Lorentzian,
Gaussian, and Voigt line shapes, where

fL(tn,θk) = e−θk,1tn+ jθk,2tn

fG(tn,θk) = e−θk,1t2
n + jθk,2tn

fV (tn,θk) = e−θk,1tn−θk,2t2
n + jθk,3tn

respectively, with, possibly, the set of parameters themselves de-
pending on some common parameters (see, e.g., [7,8]). Commonly,
the number of spectral components, s, may be unknown due to
the presence of interference or different kinds of spurious signals,
thereby making parametric techniques, like non-linear least squares,
unsuitable. Here, we are therefore primarily interested in estimat-
ing both the model order, s, and the unknown parameter detailing
the components, {ak,θk}

s
k=1; it should be noted that number of pa-

rameters best suited to model each component may vary among the
components, and is generally unknown. One option for solving such
a problem is to transform the problem into a sparse reconstruction
setting (see, e.g., [9]). This is achieved by restricting the parame-

ter space for θk to a finite collection of values, Θ̃k,p = {θ l
k,p}

Nk,p

l=1 ,

where θ l
k,p denotes the l:th grid point for the p:th coefficient and

the k:th element, with Nk,p denoting the number of elements of the
allowed parameter space. For notational simplicity, but without loss

of generality, we here set N = Nk,p, ∀ k, p, such that Θ̃k,p = Θ̃. The
continuous parameter space of each function f has thereby been
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approximated to be restricted to a set of N discrete elements. By
further expanding the sum in (1) to be formed over D ≫ s dictio-
nary functions, so that

y(tn) =
D

∑
l=1

al f (tn,θl)+w(tn) (2)

where thus only s of the D amplitudes al are non-zero, one may
express the problem succinctly in matrix notation as

yM = Ax+wM (3)

A = [ f1 . . . fD ]

fi =
[

f (t1,θ
i
k) . . . f (tM ,θ i

k)
]T

(4)

yM = [ y(t1) . . . y(tM) ]T

where (·)T denotes the transpose, x ∈ C
D, and wM is formed sim-

ilarly to yM . It should be stressed that the θ i
k appearing in (4) thus

corresponds to the properly selected element from Θ̃, such that (3)
coincides with (1) and (2). The estimation problem is thus trans-
formed from a nonlinear optimization problem to the familiar set-
ting of linear algebra. To estimate s and {ak,θk}

s
k=1 now involves

finding which dictionary elements, xk ∈ x, that are non-zero, since
each xk in this way corresponds to specific values for ak and θk, and
as a result s may be found as being equal to the number of non-
zero xk values. Thus, the parameter estimate will be limited by the
grid on which the parameter space is discretized, meaning that in
order to get a high resolution estimate of θk, the number of poten-

tial dictionary elements in Θ̃ needs to be large, and, in fact, usually
larger than the number of observations. This makes (3) an under-
determined linear systems and, since one may safely assume that A

has full rank, it has infinitely many solutions. A commonly used
approach to solve this form of under-determined system of equa-
tions is by choosing the solution with the minimum ℓ2 norm. The
resulting solution is unfortunately not of interest here since it tends
to give very few zero elements. However, if one assumes that it is
known that the signal in (1) allows for a sparse representation, then
for the transformed problem, one can assume that only a few ele-
ments in x are non-zero, which means that the problem is instead to
find an appropriate sparse solution among the infinitely many possi-
ble solutions. This can be achieved by adding a penalty term, ρ(·),
such that small values of x are shrunken to zero, i.e., the solution is
reformulated to finding x such that

min
x

||yM −Ax||22 +ρ(x), (5)

where often the penalty term is formed as a scaling of the ℓ1 norm,

∑
M
r=1 |xr|, see e.g., [10, 11]. The literature on finding such sparse

solutions is rich, being of interest in a wide range of fields, such as,
for instance, machine learning [12, 13], compressive sensing [14],
statistics [11], and signal processing [5, 6].

3. FOCUSS/SLIM

The above formulation results in a convex optimization problem,
allowing for a unique but not necessarily optimal solution in the
sense that it may not be the sparsest possible. In fact, in many cases
the ℓ1 solution is not sparse enough, which has lead to investigations
that replace the ℓ1 penalty with another function that will give even
sparser results, see e.g., [15] and the references therein. Often, the
so-called ℓq norm, formed as

ρ(x) = ||x||qq =
M

∑
i=1

|xi|
q , 0 < q ≤ 1, (6)

although not a true norm, has been suggested, both with theoreti-
cal [16,17], and empirical [5,6,9,18] support. Here, we will restrict

our attention to these kind of approaches, and in particular focus
on FOCUSS-based techniques such as the SLIM algorithm. Further
insight of these algorithms may be gained by re-deriving them in a
probabilistic setting based on an EM formulation of the algorithms.
A probabilistic viewpoint of (5) is possible, as pointed out in [11],
by interpreting it as an estimate of the mode of the posterior distri-
bution, or the maximum a posteriori (MAP) estimate, e.g., if, for
example, ρ(x) is the ℓ1 penalty, the optimization criterion in (5) can
be seen as a log-likelihood that is consistent with a MAP estimate
of a model with Gaussian observations and independent identical
Laplace priors on the amplitudes of xi. In the same way, the ℓq

norm leads to the model

p(yM |x) =
1

πM |Σw|
e−(yM−Ax)HΣ−1

w (yM−Ax)

p(x) ∝
n

∏
k=1

e−λ |xk |
q

(7)

where (·)H denotes the conjugate transpose, | · | the determinant, λ
is a tuning parameter that affects the sparsity of the solution, and
p(yM |x) is the probability density function of yM given x. The
MAP estimate of x, given the observed measurements, can be found
as

x̂ = argmax
x

ln p(x|yM) (8)

= argmax
x

ln p(yM |x)+ ln p(x). (9)

This estimate can be formed by observing that the penalty, i.e., the
probability density p(xi) ∝ exp(−λ |xi|

q) can be represented as a
complex scale mixture of normal distributed variables [19], i.e.,
there exists a positive random variable ξ with probability distribu-

tion pξ such that X = Z/ξ 1/2, where Z is standard complex normal

distributed, which is equivalent with

p(xi) =
∫ ∞

0
p(xi|ξ )p(ξ )dξ

=
∫ ∞

0

ξ

π
eξ x∗i xi p(ξ )dξ

where (·)∗ denotes the complex conjugate. This can prove useful
in cases where, e.g., it is difficult to sample from the distribution
p(xi) but simpler to draw samples from both pξ and the standard

complex normal distribution. However, by instead considering ξ as
a latent variable, or, a missing sample, a MAP estimate of x can be
obtained by the EM algorithm [20]. Extending the derivation in [21]
to complex variables, the E-step yields

E(ξi|xi) =
∫ ∞

0
ξi p(ξi|xi)dξi

=
∫ ∞

0
ξi

p(xi|ξi)p(ξi)

p(xi)
dξi

=
−1

p(xi)xi

∫ ∞

0

d

dx∗i
p(xi|ξi)p(ξ )dξi

=
−1

p(xi)xi

d

dx∗i

∫ ∞

0
p(xi|ξi)p(ξ )dξi

= −
p′(xi)

p(xi)xi
=

q

2
λ |xi|

q−2, (10)

The following M-step then finds the x that minimizes the negative
logarithm of the posterior distribution conditional upon the latent
variables as they were calculated in the E-step, i.e.,

x̂ = argminΨ(x, ξ̂ )
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Figure 1: (a): Density function of the σ 2

2n0
χ2(2n0) distribution, (b): Density functions for the scaled inv-χ2(n0,σ

2) distribution, where

2n0=5, 15, 30, 45, 60, 75, 90, and σ2 = 3. For higher values of n0, one gets a higher peak in the density function.

where

Ψ(x, ξ̂ ) = − ln p(yM |x)p(x|ξ̂ )

= xHAHΣ−1
w Ax−xHAHΣ−1

w ym −yH
MΣ−1

w Ax+

xHPx+ constant,

with ξ̂ denoting a vector containing the current best estimates of the

latent variables from the E-step, as given in (10), P = diag(ξ̂ )−1,
with diag(z) denoting the diagonal matrix formulated with the vec-
tor z along the diagonal, or alternatively, if z is a matrix, as the
diagonal matrix resulting from retaining only the diagonal elements
of z, yielding

x̂ = PAH
[

APAH +Σw

]−1
yM

Thus, in order to use the EM algorithm in this fashion, one needs
to know the covariance matrix of the noise, Σw as well as the value
of the tuning parameter λ . In the FOCUSS algorithm, the noise is
assumed circularly symmetric Gaussian with known variance, i.e.,
Σw=ηI, where η is a known positive constant. To determine λ , sev-
eral methods have been suggested; re-solving for different fixed λ
values to reach the assumed quality of fit or until assumed sparsity
level is reached, or using an L-curve method. To resolve the issue of
specifying λ , and to handle cases where the noise variance cannot
be assumed known, the SLIM algorithm suggests an iterative esti-
mation of the noise variance with λ set to 2/q, with q being a user
defined constant. This is accomplished by assuming Σw=ηI, where
η has a improper uniform prior distribution, p(η) = 1. This leads
to a iterative estimate of η , such that it is included in the M-step.
The resulting SLIM algorithm is summarized in Table 1. Conver-
gence is reasonably fast, with 10-15 iterations, depending on the
problem, often being sufficient. It should be kept in mind that each
iteration becomes faster since in every iteration some xi are set to
zero, which is equivalent with the appropriate column vector being
removed from the A matrix.

4. UTILIZING PRIOR KNOWLEDGE

In many applications, it is possible to assume some a priori esti-

mate of the noise variance, σ2
0 . For spectroscopic signals, such an

estimate may, for instance, be obtained from measurement when
the signal of interest can reasonably be assume to only affect the
measurements marginally. Here, this information is incorporated
as an a priori distribution on the variance, which is then included

Table 1: The SLIM algorithm
Initialization:

x(0) =
[

diag
(

AHA
)]−1

AHyM

η(0) =
1

M

∣

∣

∣

∣

∣

∣
yM −Ax(0)

∣

∣

∣

∣

∣

∣

2

2

Then, for iteration t = 1, . . . ,m,

x(t+1) = P(t)AH
[

AP(t)AH +η(t)I
]−1

yM

p(t+1) =

[

∣

∣

∣
x
(t+1)
1

∣

∣

∣

2−q
. . .

∣

∣

∣
x
(t+1)
D

∣

∣

∣

2−q
]T

P(t+1) = diag(p(t+1))

η(t+1) =
1

M

∣

∣

∣

∣

∣

∣
yM −Ax(t+1)

∣

∣

∣

∣

∣

∣

2

2

in the framework presented above. This prior should preferably be
selected to reflect the uncertainty in the estimated variance. For ex-
ample, under the assumption that the measurements consist of n0 in-
dependent and circularly symmetric zero mean Gaussian variables,
the variance can be estimated as

η̂ =
1

n0

n0

∑
i=1

|e(t)|2 (11)

which would then imply that η̂ ∼
σ 2

0

2n0
χ2(2n0). This distribution

is shown in Figure 1(a) for different value of n0. However, use
of this distribution as a prior is somewhat problematic as it is not
from a conjugate family for the variance of the multivariate normal
distribution, and will thus lead to a more difficult inference problem
[22]. A more convenient prior may be selected from the so-called

inv-χ2 family, described by the density [22]

fη (x) =
e−n0σ 2

0 /x

x1+n0

(σ2
0 n0)

n0

Γ(n0)
,

for the parameters n0 > 0, σ2
0 > 0, with Γ(·) denoting the Gamma-

function. In particular, for the scaled inv-χ2, the mean and the vari-
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Figure 2: The MSE of the estimated damping parameter for the first
component, as compared with the corresponding CRB.

ance can be found as

E(X) =
n0σ2

0

n0 −2

V (X) =
2n2

0σ4
0

(n0 −2)2(n0 −4)
.

As shown in Figure 1(b), the scaled inv-χ2 distribution closely re-

sembles the desired χ2 distribution, especially for larger values of
n0, but has the added benefit, as shown below, that it can incorpo-
rate the prior knowledge about the variance without increasing the
complexity of the algorithm. Using the above presentation of the
SLIM algorithm, the prior can be incorporated in the likelihood as

max
x,η

fη (η)(πη)−M
e−||yM−Ax||2/η

N

∏
k=1

e−2|xk |
q/q

Just as for the SLIM algorithm, we are interested in the MAP esti-
mate of η and x, which is equivalent with finding

{x̂, η̂} = argmax
x,η

ln p(yM |x,η)+ ln p(x)+ ln fη (η)

= argmin
x,η

gq(x,η)

where

gq(x,η) , c1 logη +
n0σ2

0

η
+

1

η
||yM −Ax||22 +

n

∑
k=1

2

q
|xk|

q,

with c1 = M + n0 + 1. The update formulas for x will thus be the
same as the one for SLIM, as given in Table 1; however, for η , one
obtains

η(t+1) = argmin
η

gq(x,η).

If we consider x to be fixed at the current best estimate, one may
find the minimum of gq(x,η) by setting the derivative with respect
to η to zero, where

d

dη
gq(x

(t+1),η) =
(M +n0 +1)

η
−

1

η2

(

||yM −Ax||22 +
n0σ2

0

η

)

which lead to the new updating formulas given in Table 2. It is
worth noting that, when n0 → 0, the new algorithm will coincide

mm
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Figure 3: the MSE of the estimated amplitude for the first compo-
nent, as compared with the corresponding CRB.

with the SLIM algorithm, and as n0 → ∞, one obtains the FOCUSS
algorithm. Since the prior distribution on |xi| will cause some bias
on the estimate ak in (1), it is suggested that one only uses the results
from the above proposed prior knowledge SLIM (PK-SLIM) to pick
the support of the x vector, and then re-estimating the amplitudes
by least squares or a similar robust technique.

5. NUMERICAL EXAMPLES

To examine the performance of the proposed algorithm, we examine
the estimation of an irregularly sampled signal simulating a stochas-
tic NQR measurement of TNT [23, 24]. The signal consists of two
damped sinusoids that may be expressed as

y(tk) = e j2π f1tk−β1tk+ jφ1 + e j2π f2tk−β2tk+ jφ2 +w(tk), (12)

where f1 = 0.03Hz, f2 = 0.12Hz, β1=0.01Hz, β2=0.012Hz, w(tk)
is a white circularly symmetric Gaussian noise with variance σ2

w,
and φ1,φ2 are uniformly distributed on [0,2π]. The sampling rate
is normalized to 1Hz, with 6 blocks of 16 samples collected with
10.5s between each block. For each signal to noise ratio (SNR),

defined here as σ−2
w σ2

s , where σ2
s denotes the signal power, 250

Monte Carlo simulations are run to estimate the mean square er-
ror (MSE) of the parameter estimates. Figure 2 and 3 illustrate
the performance of the discussed estimators for the first component
(the second behave similarly), as compared to the corresponding
Cramér-Rao bound (CRB) [25]. In the figures, the recent dIAA al-
gorithm [4] is also included for comparison. As can be seen from
the figures, the presented PK-SLIM algorithms outperform the other
algorithms noticeably for higher SNRs. Here, the assumed prior es-

timate of the noise variance, σ2
0 , has been estimated from merely

n0 = 25 measurements. Furthermore, we here use q = 0.01, noting
that the results generally improved as q got smaller.
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