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ABSTRACT
The problem of automatic music mood classification is ad-
dressed by resorting to low-rank representation of slow au-
ditory spectro-temporal modulations. Recently, it has been
shown that if each data class is linearly spanned by a sub-
space of unknown dimensions and the data are noiseless,
the lowest-rank representation (LRR) of a set of test vec-
tor samples with respect to a set of training vector samples
has the nature of being both dense for within-class affinities
and almost zero for between-class affinities. Consequently,
the LRR exactly reveals the classification of the data, result-
ing into the so-called Low-Rank Representation-based Clas-
sification (LRRC). The performance of the LRRC is com-
pared against three well-known classifiers, namely the Sparse
Representations-based Classifier, Support Vector Machines,
and Nearest Neighbor classifiers for music mood classifica-
tion by conducting experiments on the MTV and the Sound-
tracks180 datasets. The experimental results validate the ef-
fectiveness of the LRRC among the classifiers that is com-
pared to.

1. INTRODUCTION

The efficient organization of large music databases is of
paramount importance in the era of Web 2.0, since millions
of music recordings are nowadays available. The conven-
tional approach employed for music organization and re-
trieval is based on artist and album information, while the
musical genre is often adopted in order to infer semantic sim-
ilarities between musical recordings. However, music has the
ability to convey emotions. Thus, there are circumstances
that humans need to access music that match their mood, as-
sociated to a specific activity, such as relaxing, being active
and so on. Therefore, the annotation of music recordings
in terms of mood becomes important. Annotating manually
the music recordings is not an option, because it is a time
consuming and expensive process not to mention the differ-
ent perception of emotions for the same recording by hu-
mans [5, 20]. Consequently, recognizing the perceived emo-
tional content of music automatically turns to be a promising
means to enhance music organization, retrieval, and explo-
ration. This task is commonly referred to as automatic music
mood classification (AMC). A considerably volume of re-
search in AMC have been done so far. The interest reader
may refer to [7, 12]. Depending on the choice of the mood
representation to be employed for ground-truth, the avail-
able AMC systems can be divided into dimensional and dis-
crete/categorical [5, 12, 19]. Each model of mood represen-
tation is supported by a vast amount of studies in psycology
[5, 12].

Dimensional mood models rely on the assertion that dif-
ferent mood states are represented by linear combinations of
two or three basic moods. A popular dimensional model
is the Thayer mood model, where moods are represented
as points in the Arousal-Valence plane [21] as depicted in
Figure 1 (a). Thayer’s model has been recently employed
in many AMC systems [4, 25, 26]. Discrete or categorical
mood models describe the different mood states by lists of
adjectives, usually organized in clusters and train classifiers
to predict the overall emotion for a song [11, 15, 22]. Ek-
man [6] defined six universal emotions (namely anger, dis-
gust, fear, happiness, sadness, and surprise) for facial ex-
pressions. However, some of them (e.g., disgust) may not
be suitable for music [10]. From a music psychology per-
spective, Hevner describes the different music mood states
by employing a list of 66 adjectives arranged in eight clusters
[8] (Figure 1 (b)). Also, five adjective clusters have been em-
ployed for mood representation in the Music Information Re-
trieval Evaluation eXchange (MIREX) AMC task (Figure 1
(c)). A mapping of Hevner’s mood clusters, onto Thayer’s
mood plane has been derived by experts, as depicted in Fig-
ure 1 (d) [20]. Although, there are common grounds between
theoretical music mood models and listeners’ mood percep-
tion, the theoretical models do not cover all mood categories
emerged from social tagging in music [10]. The latter prob-
lem along with the lack of publicly available mood annotated
datasets make the evaluation and the comparison of AMC
systems hard [10, 11].

A variety of features have been employed in AMC sys-
tems. A common choice is to model music by the long-term
statistical distribution of short-time features. Such features
include timbral texture features, rhythmic features, pitch con-
tent, or their combinations and results into a bag-of-features
(BOF) vector. However, mood is not completely encapsu-
lated within the audio signal. Consequently, the audio fea-
tures may be complemented by features derived by metadata
associated to a music recording including information about
artist, genre, and lyrics. Commonly used classifiers are Sup-
port Vector Machines (SVM), Nearest-Neighbor (NN) ones,
or classifiers, which resort to Gaussian Mixture Models [12].

In this paper, we propose a framework for AMC that can
be adapted to both discrete and categorical mood models.
There is evidence that the initial perception of audio is per-
formed in the primary auditory cortex, where the audio signal
is encoded in terms of its spectral and temporal modulations
[17]. Thus, it is reasonable to employ the auditory model
proposed in [24] in order to map a given music recording
to a four-dimensional (4D) representation of its slow spec-
tral and temporal modulations, the so-called cortical repre-
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Figure 1: Different mood representations: (a) Thayer’s mood
plane; (b) Hevner’s adjective-cluster model [20]; (c) MIREX
adjective cluster model; (d) Mapping of Hevner’s mood clus-
ters onto Thayer mood plane [20].

sentation. Cortical representations have been proved a ro-
bust alternative to the conventional BOF approach for music
genre classification [18]. If sufficient training music record-
ings are available for each mood class and assuming that each
class is linearly spanned by the corresponding cortical rep-
resentations it is possible to express any test cortical repre-
sentation as a linear combination of the training represen-
tations, where it belongs to. This linear representation can
be found by seeking the lowest-rank representation (LRR)
of test samples with respect to training samples [14]. The
LRR possesses both dense within-class affinities and almost
zero between-class affinities. Thus, it reveals exactly the
classification of the data, resulting into a novel classification
scheme, the so-called Low-Rank Representation-based Clas-
sification (LRRC).

The performance of the LRRC in music mood classifica-
tion is assessed by conducting three sets of experiments in
two datasets, namely the MTV [20] and the Soundtracks180
[5] dataset. The MTV dataset is annotated by employing both
Thayer’s dimensional mood model and Hevner’s categorical
mood model. The Soundtracks180 dataset contains excerpts
from film soundtracks equally distributed among six discrete
mood categories. The LRRC is compared against three well-
known classifiers, namely the Sparse Representations-based
Classifier (SRC) [23], the SVM with a linear kernel, and the
NN classifier with cosine distance metric. Experimental re-
sults, indicate that the LRRC exhibits the best performance
with respect to the classification accuracy, among the classi-
fiers that is compared to for music mood classification.

In summary, the contributions of this paper include:

• The proposal of a general purpose classifier (i.e., the
LRRC) that resorts to the lowest-rank representation of
the test feature vectors with respect to training feature
vectors.

• The proposal of a novel automatic music mood classifica-
tion framework. This framework resorts to cortical rep-

resentations for music representation, while the LRRC is
employed for music mood classification.
The paper is organized as follows. In Section 2, nota-

tion conventions are introduced. The computational auditory
model and cortical representation of sound are briefly intro-
duced in Section 3. The LRRC is detailed in Section 4. Ex-
perimental results are demonstrated in Section 5, and conclu-
sions are drawn in Section 6.

2. NOTATIONS

Throughout the paper, matrices are denoted by uppercase
boldface letters (e.g., X,Y), vectors are denoted by lower-
case boldface letters (e.g., x), and scalars by lowercase letters
(e.g., i,µ,ε). The ith column of X is denoted as xi. The set
of real numbers is denoted by R, while the set of nonnegative
real numbers is denoted by R+.

A variety of norms on vectors and matrices will be used.
For example, ‖x‖2 is the `2 norm of x. The Frobenius norm
and the nuclear norm of X (i.e., the sum of singular values of
a matrix) are denoted by ‖X‖F and ‖X‖∗, respectively. The
`∞ norm of X, denoted by ‖X‖∞, is defined as the element
of X with the maximum absolute value. The trace of X is
denoted tr(X).

Let span(X) denote the linear space spanned by the
columns of X. Then, y ∈ span(X) denotes that y belongs
to span(X), and Y ∈ span(X) denotes that all column vec-
tors of Y belong to span(X).

3. COMPUTATIONAL AUDITORY MODEL AND
CORTICAL REPRESENTATION OF SOUND

The computational auditory model proposed in [24] is in-
spired by psychoacoustical and neurophysiological investi-
gations in the early and central stages of the human auditory
system. An acoustic signal is analyzed by the human au-
ditory model and a 4D representation of sound is obtained,
the so-called cortical representation. The model consists of
two basic stages. The first stage converts the acoustic signal
into an auditory representation, the so-called auditory spec-
trogram. This representation is a time-frequency distribu-
tion along a logarithmic frequency axis. At the second stage,
the spectral and temporal modulation content of the auditory
spectrogram is estimated by multiresolution wavelet analy-
sis. The multiresolution wavelet analysis is implemented via
a bank of two-dimensional Gaussian filters, that are selective
to different spectro-temporal modulation parameters ranging
from slow to fast temporal rates (in Hertz) and from narrow
to broad spectral scales (in Cycles/Octave), which results in a
4D representation of time, frequency, rate, and scale. Mathe-
matical formulation and details about the auditory model and
the cortical representation of sound can be found in [16].

Psychophysiological evidence justifies the choice of sca-
les ∈ {0.25, 0.5, 1,2,4,8} (Cycles / Octave) as well as both
positive and negative rates ∈ {±2,±4,±8,±16,±32} (Hz)
to represent the sound spectro-temporal modulations. The
cochlear model, employed in the first stage, has 128 filters
with 24 filters per octave, covering 5 1

3 octaves along the tono-
topic axis. For each music recording, the extracted 4D cor-
tical representation is averaged along time and the average
rate-scale-frequency 3D cortical representation is thus ob-
tained. By vectorizing the 3D cortical representation, each
music recording is finally represented by x ∈ R7680

+ .
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4. CLASSIFICATION VIA LOW-RANK
REPRESENTATION

In pattern analysis and machine learning, an underlying as-
sumption is that the high-dimensional data have some type
of intrinsic structure that enables their low-dimensional rep-
resentation and efficient processing. For instance, Principal
Component Analysis [9] and Robust Principal Component
Analysis [3] are based on the assumption that data are ap-
proximately drawn from a single low-rank linear subspace.
However in practice, it is more reasonable to assume that
the data are drawn from a mixtrure or union of several low-
rank linear independent subspaces. Such an assumption is
valid in many real-world cases [3, 14, 23]. By adopting the
aforementioned assumption and building on recent theoreti-
cal investigations on low-rank representation (LRR) [14], we
propose a novel classification scheme that finds the lowest-
rank representation of new (test) samples subject to a given
matrix of training samples.

Let X = [X1|X2| . . . |Xk] ∈ Rm×n be a set of n training
samples x j ∈ Rm, j = 1,2, . . . ,n that belong to k classes, ex-
actly drawn form a union of k independent linear subspaces
of unknown dimensions. The columns of Xi ∈ Rm×ni corre-
spond to the ni training samples from the ith subspace. Fur-
thermore, let us denote by Y = [Y1|Y2| . . . |Yk] ∈ Rm×p the
matrix that contains in its columns p new (test) samples, with
the columns of Yi ∈Rm×pi refers pi test samples that belong
to the ith class. By assuming that: 1) the data are drawn from
independent linear subspaces (i.e., span(Xi) linearly spans
the ith class data space, i = 1,2, . . . ,k), 2) Y ∈ span(X), and
3) the data contain neither outliers nor noise, then each test
vector sample that belongs to the ith class can be represented
as a linear combination of the training samples in Xi. That
is, Yi = XiZi with Zi ∈ Rni×pi . Accordingly, Y = XZ,
where Z = diag[Z1,Z2, . . .Zk] ∈ Rn×p is a block-diagonal
matrix. Therefore, the lth test sample can be represented as
yl =Xzl ∈Rm, where zl = [0T | . . . |0T |zT

i |0T | . . . |0T ]T ∈Rn

is the augmented coefficient vector, whose elements are zero
except those associated with the ith class. Consequently, hav-
ing found such a block-diagonal matrix Z capturing both
dense within-class affinities and zero between-class affini-
ties, the classification of the data is exactly revealed.

Following [14], and under the aforementioned three
assumptions, the block-diagonal matrix Z ∈ Rn×p is the
lowest-rank representation of the test data Y ∈ Rm×p with
respect to training data X ∈ Rm×n or equivalently the solu-
tion of the optimization problem:

argmin
Z

rank(Z) subject to Y = XZ. (1)

The optimization problem (1) does not have a unique so-
lution and it is difficult to be solved due to the discrete nature
of the rank function. However, the rank function can be re-
placed by the nuclear norm resulting to the convex optimiza-
tion problem:

argmin
Z

‖Z‖∗ subject to Y = XZ. (2)

Liu et al. [14] have proved that the optimal solution of (2)
is unique and it is also a solution of (1). Although the solu-
tion of (2) can be obtained in closed form [14], it is not stable
in many cases due to numerical issues. In order to overcome
this problem, we propose to solve the convex problem (2) it-
eratively. In this paper, we choose the Augmented Lagrange

Multiplier (ALM) [1, 13] method due to its simplicity and the
good convergence properties. To this end, (2) is converted to
the equivalent

argmin
Z,J

‖J‖∗ subject to Y = XZ, Z = J, (3)

which can be solved by minimizing the augmented Lagrange
function:

f (Z,J) = ‖J‖∗+ tr
(
ΛT

1 (Y−XZ)
)
+ tr

(
ΛT

2 (Z−J)
)

+
µ

2
(
‖Y−XZ‖2

F +‖Z−J‖2
F
)
, (4)

where Λ1,Λ2 are the Lagrange multipliers and µ > 0 is a
penalty parameter. The minimization of (4) with respect
to Z and J can be performed in an alternating fashion by
first fixing Z and updating J, then fixing J and updating Z,
and finally updating the Lagrange multipliers. The inexact
ALM method for the minimization of (2) is outlined in Algo-
rithm 1, which is a special case of Algorithm 1 in [14]. Step

Algorithm 1 Solving (2) by inexact ALM
Input: Training matrix X∈Rm×n and test matrix Y∈Rm×p.
Output: Matrix Z ∈ Rn×p.

1: Initialize: Z = J = 0, Λ1 = 0, Λ2 = 0, µ = 10−6,
ε = 10−2.

2: while not converged do
3: Fix Z and update J by

J = argmin 1
µ
‖J‖∗+ 1

2‖J− (Z+Λ2/µ)‖2
F .

4: Fix J and update Z by
Z =

(
I+XT X

)−1 (
XT Y+J+(XT Λ1−Λ2)/µ

)
.

5: Update the Lagrange multipliers by
Λ1 = Λ1 +µ(Y−XZ),
Λ2 = Λ2 +µ(Z−J).

6: Update µ by µ = max(µ,106).
7: Check convergence conditions

‖Y−XZ‖∞ < ε and ‖Z−J‖∞ < ε .
8: end while

3 of the Algorithm 1 can be solved via the Singular Value
Thresholding operator [2]. The convergence of Algorithm 1
can be proved as in [13]. The computational cost of Algo-
rithm 1 is comparable to that of a linear SVM, since the most
demanding step of Algorithm 1 is the Step 3, which involves
the computation of an SVD.

The lth test sample yl ∈ Rm can be classified as follows.
Ideally, the lth column of Z (i.e., zl ∈ Rn) contains non-zero
entries in positions associated with the columns of the train-
ing matrix X stemming from a single class so that we can
easily assign yl to that class. However, due to modeling er-
rors, there are small non-zero entries in zl that are associated
to multiple classes. To cope with this problem, each test sam-
ple yl is classified to the class that minimizes the `2 norm
residual between yl and ŷi = X δi(zl), where δi(zl) ∈ Rn is
a new vector whose nonzero entries are the entries in zl that
are associated to the ith class only. The procedure is outlined
in Algorithm 2.

5. EXPERIMENTAL EVALUATION

In order to assess the performance of the LRRC, experiments
were conducted by employing two mood annotated datasets.
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Algorithm 2 Low-Rank Representation-based Classification
Input: Training matrix X∈Rm×n and test matrix Y∈Rm×p.
Output: A class label for each column of Y.

1: Solve (2) by employing Algorithm 1 and obtain
Z ∈ Rn×p.

2: for l = 1 to p do
3: for i = 1 to k do
4: Compute the residuals ri(yl) = ‖yl−Xδi(zl)‖2.
5: end for
6: class(yl) = argmini ri(yl).
7: end for

The first dataset contains 195 full music recordings with to-
tal duration 14.2 h from the MTV Europe Most Wanted Top
Ten of 20 years (1981-2000), covering a wide variety of pop-
ular music genres. The ground-truth was obtained by five
annotators (four males and one female) who were asked to
make a forced binary decision according to the two dimen-
sions in Thayer’s mood plane (i.e., assigning either +1 or−1
for arousal and valence respectively) according their mood
perception. Based on the mean arousal and the mean valence
values, each recording can be described as single point in
Thayer’s mood plane, and thus can be assigned to a Hevner
mood cluster [20] by employing the mapping depicted in Fig-
ure 1 (d). The dataset is abbreviated as MTV hereafter. The
second dataset is a subset of the Soundtracks dataset [5] (ab-
breviated as the Soundtracks180) with 180 excerpts from film
soundtracks. Excerpts have duration between 10 and 30 sec
and are equally distributed among six discrete mood cate-
gories, such as happiness, sadness, fear, anger, surprise, and
tenderness. Soundtracks180 was annotated by 12 expert mu-
sicologists who had all studied a musical instrument for at
least 10 years.

All the recordings were converted to monaural wave for-
mat at a sampling frequency of 16 kHz and quantized with 16
bits. Moreover, the audio signals have been normalized, so
that they have zero mean amplitude with unit variance in or-
der to remove any factors related to the recording conditions.
The cortical representations were extracted by the middle 30
sec of each recording in the MTV dataset and by employ-
ing the whole music excerpt for the Soundtracks180 dataset.
The experimental results, presented below, were obtained by
employing stratified 10-fold cross-validation. The LRRC is
compared with three classifiers, namely the SRC, SVM with
linear kernel, and NN with cosine distance metric. Due to
the assumed subspace structure of cortical representations,
both linear SVM, SRC, and NN are appropriate for separat-
ing features from different music recordings. Furthermore,
the aforementioned classifiers are working in the same fea-
ture space with the LRRC, which makes possible compare
their performance fair.

Two sets of experiments were conducted in the MTV
dataset. In the first set, the ground-truth is obtained by em-
ploying the Thayer’s mood model, while in the second one
the Hevner’s mood model has been adopted. The two dimen-
sions in Thayer’s mood plane, can be treated as being inde-
pendent of each other. Therefore classification can reason-
ably be done independently [20] by making binary decisions
between excitation and calmness on the arousal dimension
and negativity and positivity in the valence dimension, re-

spectively. By adopting Hevner’s mood model, the task is to
classify the music recordings into seven mood clusters. Fol-
lowing [20], and by allowing for slight variations in subjec-
tive perception, classifier predictions on the true mood clus-
ter or its two direct neighbors are considered to be correct.
The classification results are summarized in Table 1. The
last three rows of Table 1 include the classification results
obtained by Schuller et al. [20] by employing audio features
(without feature selection) and an SVM with a linear kernel.

Table 1: Classification accuracies on the MTV dataset by
employing Thayer’s and Hevner’s mood models.

Classifier/Reference Mood Model Accuracy (%)
Thayer, Arousal 68.28

LRRC Thayer, Valence 61.43
Hevner 64.57

Thayer, Arousal 64.49
SRC Thayer, Valence 61.75

Hevner 56.50
Thayer, Arousal 65.24

SVM Thayer, Valence 57.51
Hevner 61

Thayer, Arousal 61.94
NN Thayer, Valence 59.08

Hevner 59.65
Thayer, Arousal 71.80

[20] Thayer, Valence 60.50
Hevner 65.40

In Table 2, the classification accuracies obtained by con-
ducting experiments on the Soundtracks180 dataset are pre-
sented.

Table 2: Classification accuracies on the Soundtracks180
dataset.

Classifier Accuracy (%)
LRRC 39.44

SRC 39.44
SVM 37.22
NN 33.88

By inspecting Tables 1 and 2, the LRRC clearly exhibits
the best performance, with respect to the classification accu-
racy, among the classifiers that is compared to, with respect
to stratified 10-fold cross-validation. Both the LRRC and the
SRC exhibit better performance in Valence prediction com-
pared to the system proposed in [20] while in Arousal predic-
tion our results are inferior to that reported in [20]. The latter
may attributed to the cortical representations which do not
depend on extensive feature selection applied to the BOF em-
ployed in [20]. However, the classification accuracy obtained
by the LRRC, when the Hevner’s model has been adopted
in annotation of the MTV dataset, is comparable to that re-
ported in [20], motivating further research. Furthermore, the
best classification accuracy on the Soundtracks180 dataset
obtained the LRRC (i.e., 39.44 %) is quite acceptable since
the cortical representations extracted by very short excerpts
that may be not able to capture accurately the mood aspects
of music. Currently, there are not other published results in
AMC by employing this dataset.

Generally speaking, although our initial assumptions
are quite restrictive, since should be the data drawn from
a union of low-rank linear independent subspaces, when
the subspaces are low-rank and the data vectors are high-
dimensional, as in our case, the assumption of independence
is roughly equal to the disjoint assumption. That is, the in-
tersection of every two subspaces is the null set. The latter
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assumption is more realistic and possibly justifies the success
of the LRRC on the AMC.

6. CONCLUSIONS

A novel automatic music mood classification framework
has been proposed. This framework resorts to cortical
representations for music representation, while a novel
classifier, namely the LRRC, has been proposed for music
mood classification. The performance of the LRRC is
assessed by conducting three sets of experiments on two
datasets annotated by one dimensional (i.e., Thayer’s model)
and two categorical mood models. The LRRC exhibits the
best performance, with respect to the classification accuracy,
among the classifiers that is compared to, when applied to
the music mood classification task.
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