
PARALLEL IMPLEMENTATIONS OF BEAMFORMING DESIGN AND
FILTERING FOR MICROPHONE ARRAY APPLICATIONS

Jorge Lorente1, Gema Piñero1, Antonio M. Vidal2, Jose Antonio Belloch1, Alberto Gonzalez1

1 Institute of Telecommunications and Multimedia Applications (iTEAM)
2 Interdisciplinary Group of Computer and Communications (INCO2)

Universitat Politècnica de València
{jorlogi, gpinyero}@iteam.upv.es

ABSTRACT

One of the main limitations of microphone array algorithms
for audio applications has been their high computational cost
in real acoustic environments when real-time signal proces-
sing is absolutely required. Regarding audio/speech signal
processing, beamforming algorithms have been used for the
recovery of acoustic signals from their observations when
they are corrupted by noise, reverberation and other inter-
fering signals. In order to reduce their high computational
load, frequency-based filtering have been used to achieve a
real time application. Our research focuses on the use of
different multicore/manycore platforms in order to achieve a
real time beamforming application in the time domain. Ef-
ficient algorithms has been proposed and tested in several
devices and results have shown that GPU implementation of
beamforming design and filtering outperforms multicore im-
plementation in computational cost terms. The performance
obtained suggests that GPU implementation paves the way
for low-cost real-time audio beamforming applications.

1. INTRODUCTION

Since digital signal processors and other devices have subs-
tantially increased their computational performance, inten-
sive and complex problems have been addressed and solved
in shorter time. This has benefited both the typical real-
time applications that are common in signal processing as
any other signal processing applications that imply the ma-
nagement of very large data sets.

More recently, specialized (many-core) hardware with
hundreds of simple cores are available in the form of cheap,
widely-spread NVIDIA and AMD/ATI Graphic Processor
Units (GPU) incorporated in any standard graphics card.
For example, 512 cores are embedded in the NVIDIA Fermi
architecture.

Although programming in many core architectures is not
trivial [1], there are many tools to help software developers
to adapt their programs to the new architectures [2]. We
can cite, for example, the following GPU libraries: CUBLAS
and CUFFT: implementations on CUDA of the well-known
BLAS computational kernels and FFT algorithms [3], and
CULA: implementation of the LAPACK library for GPU [4].
Otherway, there are also CPU libraries that take advantage
of parallelization over different CPU cores like Intel MKL
library [5].

Some signal processing applications are already taking
advantage of these opportunities [6, 7, 8, 9]. Regarding au-
dio/speech signal processing, in [10, 11] the use of GPU is

This work has been supported by Spanish Ministry of
Science and Innovation through grant TEC2009-13741, Regio-
nal Government Generalitat Valenciana through grant PROME-
TEO/2009/013 and NVIDIA through CUDA Community pro-
gram.

proposed to speech recognition applications achieving spee-
dups up to 5x and 9x respectively; similarly GPU imple-
mentation is also proposed for adaptive filtering of Acoustic
Echo Canceller in [12]. Moreover, in [13] about 11x speedup
is achieved when GPU is used for filtering with beamforming-
design filters both in time and frequency. Finally, related to
immersive audio technologies, [14] presents multi-core Plat-
forms for Beamforming and Wave Field Synthesis with dif-
ferent speedup performances.

In this paper we discuss the GPU’s possibilities to imple-
ment a whole beamforming algorithm application (beamfor-
ming filter design and beamforming filtering) in real-time.
We compare multicore and manycore implementations of
beamforming filter design in order to determine that GPU
implementation outperforms multicore implementation in all
cases. Furthermore, we use GPU implementation for beam-
forming filter design with a CUDA implementation of the
filtering to show that a real-time implementation of a whole
beamforming algorithm can be entirely run on a GPU freeing
up resources from the CPU.

This paper is organized as follows: section 2 describes the
signal model used in the microphone array application. Sec-
tion 3 introduces an efficient version of the optimum beam-
forming, the QR-LCMV, and compare it with GSC algo-
rithm. Section 4 explains the implementations of the beam-
forming filter design and the filtering on the different multi-
core/manycore platforms. Finally, sections 5 and 6 are de-
voted to show test results and conclusions respectively.

2. SIGNAL MODEL

Consider the system of Figure 1 where two loudspeakers are
emitting two independent signals, s1(k) and s2(k), respecti-
vely. At the other part of the room, three microphones are
recording the mix of the two signals corrupted by noise and
room reverberation. The problem is how to recover s1(k)
or s2(k) by means of the signals recorded at the micropho-
nes. The approach taken herein makes use of signal proces-
sing algorithms to design the broadband beamformers (fil-
ters gn in Figure 1), once all the room channel responses
(hnm in Figure 1) are known. This system can be modeled
as a multichannel system with 2 inputs (loudspeakers) and
3 outputs (microphones), and the generalization to a Mul-
tiple Input Multiple Output (MIMO) system can be easily
addressed [15].

According to Figure 1, the output of the n-th microphone
is given by:

xn(k) =

M∑
m=1

Lh∑
j=1

hnm(j)sm(k − j) + vn(k), (1)

where n = 1, 2, . . . , N , being N the number of microphones
and M the number of source signals, that is equal to the
number of loudspeakers in Figure 1. Lh is the length of the

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 501

x1(k)

x2(k)

x3(k)

s1(k)

s2(k)

g1

g2

g3

y(k)

h22

h12

h31

h32

h21

h11

v1(k)

v2(k)

v3(k)

Figure 1: Signal model for M = 2 loudspeakers (inputs) and
N = 3 microphones (outputs).

longest room impulse response of all the acoustic channels
hnm and vn(k) is the noise signal. For the sake of clarity the
noise term vn(k) of (1) will not be considered in the following
signal model. In order to improve computation efficiency,
equation (1) can be rewritten in vector/matrix form as:

xn(k) =

M∑
m=1

hT
nmsm(k), (2)

where sm(k) is the column vector defined as sm(k) =
[sm(k) sm(k−1) · · · sm(k−Lh+1)]T , hnm is theRLh×1

acoustic channel vector from loudspeaker m to microphone
n and ()T denotes the transpose of a vector or a matrix.

Considering now the problem of recovering source signals
sm(k) from the recorded observations xn(k), beamforming
filters gn of Figure 1 have to be designed in such a way that
the output signal y(k) is a good estimate of sm(k), that is,
y(k) = ŝm(k − τ) with minimum error. Given a maximum
length of Lg taps for each of the gn filters, the broadband
beamforming output signal is expressed in a similar form as
in (2):

y(k) =

N∑
n=1

gT
nxn(k), (3)

where gn is the RLg×1 vector containing the ordered taps of
beamforming filters gn of Figure 2, and xn(k) is the column
vector defined as xn(k) = [xn(k) xn(k − 1) · · · xn(k −
Lg + 1)]T .

In order to compute the whole vector xn(k) used in (3)
in matrix form, equation (2) has to be rewritten in com-
pact form redefining hnm as Sylvester matrices. See [15] for
further details.

3. BEAMFORMING ALGORITHMS

In [15], Benesty et al. present an excellent state-of-the-art
of the main algorithms used in audio applications. Due to
its better performance, we have focused our study on ma-
trix correlation based algorithms, such as LCMV (Linearly
Constrained Minimum Variance) and its unconstrained im-
plementation GSC (Generalized Sidelobe Canceller).

3.1 QR-LCMV Beamforming Algorithm

LCMV algorithm calculates beamforming filters as:

gLCMV = R̂−1
x H:m[HT

:mR̂−1
x H:m]−1um, (4)

where gLCMV is formed by the concatenation of filters gn,
that is, gLCMV = [gT

1 · · · gT
N]T , matrixH:m is a partition

of the channel impulse matrix that only includes the impulse
responses from m-th source to the N microphones [15] used
in sylvester matrix form and has dimensions [NLg × Lg +

Lh− 1]. Matrix R̂x is the correlation matrix of the recorded
signals and um is a vector of zeros except for a one at the
proper vector component in order to compensate the room
impulse response delay.

Seeking the most efficient LCMV implementation, a met-
hod based on QR decomposition of matrix XT is presented,
being X ∈ ℜ[NLg×K] defined as:

X =
1√
K


x1(k) x1(k + 1) · · · x1(k +K − 1)
x2(k) x2(k + 1) · · · x2(k +K − 1)

...
... · · ·

...
xN (k) xN (k + 1) · · · xN (k +K − 1)


(5)

where K > NLg is the number of samples used.
This way, XT = Q ·L, where Q is an orthogonal matrix

and L is an upper triangular matrix which allows a faster
resolution in linear algebraic systems. Note that [16] pre-
sents a similar method based on a QR decomposition of the
microphone observations matrix applied to the MMSE filter
design.

Considering QR decomposition of microphone observa-
tions, we can redefine R̂x as:

R̂x = X ·XT = LT ·QT ·Q · L = LT · L. (6)

Now, let us denote matrix W = R̂−1
x H:m such that

LCMV beamformer filter gLCMV
m (4) is expressed as:

gLCMV
m = W[HT

:mW]−1um. (7)

It can be shown that:

W = R̂−1
x H:m = (LTL)−1H:m = L−1Z, (8)

where:
Z = LT−1

H:m. (9)

Let us define now matrix A as (7)

A = HT
:mW = HT

:mL−1Z = ZTZ. (10)

Finally defining vector bm = A−1um we can express the
LCMV beamformer filter gLCMV

m as follows:

gLCMV
m = L−1Z · bm. (11)

Using this method the main operations involve only ma-
trix Z and vector um. Once Z is computed, matrix A and
vector um can be calculated and used to get beamforming
filters gLCMV

m . Moreover, calculation of (9) and (11) involve
the solution of linear equations where the inverse of a matrix
doesn’t need to be computed if efficient left matrix division is
used. Therefore, (4) can be computed avoiding costly matrix
inversions through a QR decomposition and two left matrix
divisions

3.2 GSC Algorithm

The GSC and LCMV beamformers are essentially the same,
although GSC transforms the LCMV algorithm from a cons-
trained problem to an unconstrained one dividing the filter
vector g into two components operating on orthogonal subs-
paces.

In order to avoid the malfunctioning of the GSC, we as-
sume that Lg > (Lh−1)(N−1) so that the nullspace of HT

:m

can’t be zero. Then, the GSC method can be formulated as:

gm = fm −Bmwm, (12)

502

LCMV GSC filters adaptation GSC room actualization
M-V Multiplication OL2

3 O(L1Lnull)≃OL1 O(L1L3)≃OL1

M-M Multiplication O(L2
3L1) ≃OL3

3 O(L2
1L2 + L2

2Lnull + L2
nullL1) ≃O(L2

1L2) O(L2
3L2)

M-V Linear Equation System O(1
3L

2
3 + 2L2

3 + L2
1) O(1

3L
2
1Lnull + L1Lnull) ≃O(1

3L
3
3 + L1) O(1

3L
3
3 + 2L2

3)
M-M Linear Equation System triangular matrix, so: OL2

1 0 0
QR decomposition O 2

3L
2
1(3L1 − L2) 0 O 2

3L
2
1(3L1 − L3)

Generate matrix Q 0 0 O 2
3L

2
1(3L1 − L3)

Floating-point operations 7.3155 ∗ 109 4.2195 ∗ 109 1.4346 ∗ 1010

Table 1: Floating-point operations of LCMV and GSC algorithms.

where
fm = H:m[HT

:mH:m]−1um (13)

is the minimum norm solution of HT
:mfm = um and Bm is

the blocking matrix that spans the nullspace of HT
:m so that

HT
:mBm = 0.
Vector wm is obtained from the following unconstrained

optimization problem:

min
wm

(fm −Bmwm)TRx(fm −Bmwm) (14)

and its solution is given as:

wm = [BT
mRxBm]−1BT

mRxfm. (15)

3.3 Computational comparison between QR-LCMV
and GSC

QR-LCMV and GSC have to update the block of microphone
observations X, in order to work in real-time. For the pur-
pose of comparing computational cost of boths algorithms
an analysis of the floating-point operations of each block is
necessary.

The computational cost is analyzed in reference to the

matrix size of X[L1×L2], H
[L1×L3]
:m and B[L1×Lnull] where

L1 = NLg, L2 > NLg+1, L3 = Lh+Lg−1 and Lnull = L1−
L3. In order to avoid ill conditioned correlation matrix, we
have take L2 = 5

4
NLg. Considering that Lh is an invariant

value fixed by the dimensions of the room, N is an invariant
value fixed by the dimensions of the microphone array and
Lg is a variable value always bigger than Lh

2
[15], Lnull

increases as Lg increases.
As it can be noted in section 3.2, GSC algorithm divides

the filter design calculation in a fixed part (calculation of fm
and Bm, only dependent on room dimensions) and an adap-
tive part (calculation of wm, dependent on input samples).
For this reason, GSC is expected to have less floating-point
operations for invariant room responses.

The number of floating-point operations needed for each
new block of microphone observations, is shown in the first
two columns of Table 1. Column three of Table 1 show num-
ber of extra operations needed because of a room actualiza-
tion. In Table 1, M-V and M-M refers to matrix-vector and
matrix matrix operations respectively. Note that for our case
with N = 3 microphones and the minimum Lg = Lh

2
value,

L1 = 3Lh
2

and L3 = Lh + Lg − 1 = Lh + Lh
2

− 1 = 3Lh
2

− 1,
so Lnull = L1 −L3 = 1 and all the computational cost when
Lnull is involved is neglected compared to dimensions L1, L2

and L3. Last row shows an example of floating-point opera-
tions computed in our experiment with N = 3 microphones,
Lh = 1000 and Lg = Lh

2
.

4. PARALEL IMPLEMENTATIONS

4.1 Beamforming filter design

4.1.1 GPU Implementation

Both QR-LCMV and GSC Algorithms have been implemen-
ted on GPU (NVIDIA GeForce GTX285) using Lapack and

SIGNAL

ACQUISITION

HOST

MEMORY
CPU

HOST i7 2.67GHz

DEVICE GTX285 (240 cores in 30 processors)

DEVICE MEMORY

[1] Copy proces-

sing data

[3] Execute beamforming

!lter design and !ltering

simultaniously in every core

[4] Copy results

[2] Instruct the

processing

Figure 2: GPU implementation.

BLAS CUDA libraries (CULA and CUBLAS respectively).
The platform used to develop the algorithms is Microsoft
Visual Studio 2008. In figure 2 a basic scheme of the GPU
implementation of the algorithms is depicted.

4.1.2 Multicore Implementation

A multicore implementation of beamforming algorithms has
been also implemented on a CPU (Intel Core i7 2.67Ghz with
4Gb of RAM) using Intel MKL library which includes Lapack
and BLAS threaded functions. In our implementation we
have parallelized the beamforming filter design in 4 CPU
cores setting MKL NUM THREADS=4.

4.2 Filtering

Once the filters have been calculated we can recover the
desired signal filtering microphone observations with beam-
forming filters gm (11) and (12).

Dealing with multichannel filtering takes a large compu-
tational cost and considering our goal of a total GPU imple-
mentation to free up resources from the CPU, only a GPU
implementation of multichannel filtering is here considered.
The algorithm we present is focused on the overlap-save te-
chnique to carry out a multichannel convolution.

The filtering implementation is based on CUFFT CUDA
library whose concurrent copy and execution property allows
transferring data from the CPU to the GPU and vice versa
at the same time that computations are performing. This
allows to obtain the best performance of the algorithm and
at the same time to exploit the parallelism of the CUDA
architecture. A Matrix-Signal will be configured with the
blocks of the signals xn. The filters gm will be sent only once
to the GPU. As long as the matrix signal is filled, this matrix
will be sent to the GPU and, a new matrix will begin to be
filled. In the same sense, as long as operations end at the
GPU, the result matrix is sent back to the CPU. Therefore a
pipeline configuration can be achieved easily. See reference

503

Block processing time (ms) Number of consecutive blocks processed for real-time
Lg Lb Lb/fs(ms) LCMV time GSC time LCMV GSC
500 3375 76.5 467.4 124.8 7 2

fs = 44100 550 3713 84.2 548.3 182.1 7 3
600 4050 91.8 656.2 246.1 8 4

Lh = 1000 650 4388 99.5 750.2 326.7 8 4
700 4725 107.1 852.5 429.1 9 5
750 5063 114.8 968.8 543.8 9 5

Table 2: Processing time of LCMV and GSC algorithms for the different cases analyzed.

500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Length of Lg

G
P

U
 t

im
e

ex
ce

cu
ti

o
n

 (
se

co
n

d
s)

LCM V

GSC only filters adaptation

GSC updating room every 10 filter adaptation

GSC updating room every 5 filter adaptation

GSC updating room every 2 filter adaptation

GSC updating room every filter adaptation

Figure 3: LCMV and GSC execution time varying the fre-
quency of room actualization in GSC algorithm.

[17, 18] for further details.

5. TESTING RESULTS

As discussed in section 3.2, GSC algorithm calculation is
divided in a fixed part and an adaptive part. The fixed part
only needs to be calculated when a room updating is needed.
In some applications like immersive-audio technologies where
sources are supposed to move over the scenario, the room
impulse responses need to be estimated more frequently that
in those applications where the sources and microphones are
fixed.

In these sense, LCMV and GSC execution time have been
compared in figure 3. It is easy to see that when a frequent
room updating is not necessary, GSC algorithm outperforms
LCMV. For this reason in the next section, only GSC imple-
mentation is tested in different platforms.

5.1 GSC CPU-GPU comparison

In this section we compare different implementations of GSC
algorithm tested in a room in which baseline impulse respon-
ses have length Lh = 1000 for different lengths of beamfor-
ming filters Lg.

Results are shown in figure 4, where we can see that
in both GSC parts (fixed and adaptive) GPU outperform
CPU implementation, reaching about 13x speedup in the
best case. It is also significant that the speedup is better
in fixed part than in adaptive part, and the reason is that
fixed operations (for example QR decomposition) have grea-
ter computational load, and therefore GPU can take better
advantage of the parallelization.

500 550 600 650 700 750
0

2

4

6

8

10

12

14

S
p

ee
d

u
p

500 550 600 650 700 750
0

Length of Lg

S
p

ee
d

u
p

GPU vs CPU

GPU vs 4 core CPU

GPU vs CPU

GPU vs 4 core CPU

2

4

6

8

10

12

14

F
ix

ed
 p

art calcu
latio

n
A

d
ap

tativ
e p

art calcu
latio

n

Figure 4: a) GSC execution time only for the fixed part. b)
GSC execution time only for the adaptive part.

5.2 Achieving real-time processing.

Our work aims to achieve both beamforming filter design and
real-time filtering, thus working by blocks of microphone ob-
servations becomes a condition to achieve a real-time audio
application. However, an unavoidable but not critical initial
delay, which is exactly the processing time of the first block,
appears by working by blocks. Note that the processing time
of a block includes the filter design and the filtering.

For each block of microphone observations, a matrix co-
rrelation needs to be estimated so that the adaptation of
filters fit the microphone observations. Thus, the minimum
block size (Lb) is set by the minimum taps of the microphone
observations needed to make a correlation matrix of full rank.
Lb depends directly of Lh in the way that Lb ≥ 2NLg − 1

and Lg ≥ Lh
2

[15]. To obtain a well conditioned correlation

matrix we use Lb =
9
4
NLg.

Working by blocks and pretending a real time approach,
the processing time of a block must be smaller than the re-
production time of the previous block. Thereby, working
with fs Hz of sample frequency, a block must be processed
in at most Lb

fs
seconds.

In table 2 significative parameters for different lengths
of Lg are specified. As we can see, in all cases block filter
calculation needs more execution time than block reproduc-
tion (Lb

fs
seconds), so the system wouldn’t work in real time.

Using the same correlation matrix for blocks of x-times the
minimum block size Lb,

Lb
fs

and consequently the processing

block time grows, and real time can be achieved.
As mentioned in previous section, the filtering is done in

CUDA and the three channels are filtered in less than 0.009
seconds [18]. Table 2 shows that the number of times that
Lb must grow to achieve real time.

504

500 550 600 650 700 750
0.01

0.012

0.014

0.016

0.018

0.02

L
g
 values

M
S

E

QR−LCMV

500 550 600 650 700 750
0.01

0.012

0.014

0.016

0.018

0.02

Lg values

M
S

E

GSC

Blocks of Lb

Blocks of 4 Lb

Blocks of 9 Lb

Blocks of Lb

Blocks of 3 Lb

Blocks of 5 Lb

Figure 5: Comparison of MSE working with different block
size for QR-LCMV and GSC algorithms.

5.3 Discussion of the introduced error working with
sample correlation matrix.

The Mean Squared Error (MSE) has been calculated to
quantify the difference between the original signal and the re-
covered signal with different estimates of the correlation ma-
trix, the so-called sample correlation matrix given in equa-
tion (6). The MSE of an estimator ŝ with respect to the
estimated parameter s is defined as MSE(̂s) = E[(̂s− s)2].

Performance of MSE in temporal domain of both algo-
rithms is analyzed in figure 5 to quantify the error. Note
that for LCMV algorithm, the application wouldn’t work in
real-time with blocks of length Lb. On the other hand, blocks
of length 8Lg would let the application work in real-time for
Lg ≤ 700 and finally, with length 9Lg real-time performance
is achieved in all cases (see table 2). It can be seen that for
all the different values of Lg the error does not increase signi-
ficantly between different sizes of blocks.The same reasoning
can be applied to GSC algorithm.

6. CONCLUSIONS

Different efficient multicore (CPU) and manycore (GPU) im-
plementations of a microphone-array beamforming applica-
tion have been analyzed in order to achieve a real time beam-
forming application. The GPU architecture has turned out
to be the best option due to its greater speedup performance
and its possibility to free up resources from CPU.

It has to be noted that the whole application has been
developed in GPU: beamforming filter design, using CULA
and CUBLAS libraries, and also the corresponding filtering
using CUDA programming.

It has been shown that beamforming algorithm imple-
mented in GPU using CULA and CUBLAS achieve in the
best case over 13x of speedup compared to one core CPU.
GPU also outperforms multicore parallelization with 4 co-
res. Note that the speedup could be greater if bigger ma-
trix would be involved in beamforming operations, but that
would be a disadvantage to achieve a real time beamforming
application.

The CUDA filtering application based on pipeline con-
figuration achieve multichannel filtering needed in our
microphone-array system. Furthermore it has been demons-
trated that the error of designing beamforming filters using
same correlation matrix for 9 blocks instead of calculating
on matrix correlation for each block is not critical in the
beamforming performance.

REFERENCES

[1] David Patterson, “The Trouble with Multi-Core”, IEEE
Spectrum, Vol. 47, Issue 7, pp. 28–32 and 52–53, Juny
2010.

[2] Trista P. Chen and Yen-Kuang Chen, “Challenges and
Opportunities of Obtaining Performance from Multi-
Core CPUs and Many-Core GPUs”, ICASSP 2009.

[3] CUBLAS Library 3.0 and CUFFT Library 1.1, availa-
ble online:
“http://developer.download.nvidia.com”

[4] CULA Library, available online:
“http://www.culatools.com”

[5] Intel MKL , available online:
“http://software.intel.com/en-us/articles/intel-mkl”

[6] E. Gallo and N. Tsingos, “Efficient 3D audio processing
with the GPU”, in ACM Workshop on General Purpose
Computing on Graphics Processors, Los Angeles, USA,
vol. 1, pp. C–42, August 2004.

[7] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E.
Stone and J.C. Phillips, “GPU computing”, Proc. of
the IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[8] M.D. McCool, “Signal processing and general-purpose
computing and GPUs”, IEEE Signal Processing Maga-
zine, vol. 24, no. 3, pp. 109–114, May 2007.

[9] Rob V. van Nieuwpoort and John W. Romein, “Buil-
ding Correlators with Many-Core Hardware”, IEEE
Signal Processing Magazine, Vol. 27, Issue 2, pp. 108–
117, March 2010.

[10] Paul R. Dixon, Tasuku Oonishi, Sadaoki Furui, ”Fast
Computations using Graphics Processors”, ICASSP
2009.

[11] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Co-
meau, ”GPU accelerated acoustic lilelihood Compu-
tations”, ISCA Interspeech, pp: 964-967, 2008.

[12] Kihiro Hirano and kenji Nakayama, ”Implementation
of stereophonic acoustic echo canceller on nVIDIA Ge-
Force graphics processing unit”, INSPACS 2009, Ja-
nuary 2009.

[13] Carl-Inge Colombo Nielsen, Ines Hafizovic, ”Digital
beamforming using a GPU”, ICASSP 2009, April 2009.

[14] Dimitris Theodoropoulos, Georgi Kuzmanov, Georgi
Gaydadjiev, ”Multi-core Platforms for Beamforming
and Wave Field Synthesis”, IEEE Transactions on Mul-
timedia, Issue:99, December 2010.

[15] J. Benesty, J. Chen, Y. Huang and J. Dmochowski, “On
microphone-array beamforming from a MIMO acous-
tic signal processing perspective”, IEEE Trans. on Au-
dio, Speech and Lenguage Processing, vol. 15, no. 3, pp.
1053–1065, March 2007.

[16] Zen Zhaohua, Zhan Jianhong, Zhao Qian and Liu Han-
jun “Research of adaptative beamforming algorithm ba-
sed on matrix decomposition”, Information Engineering
and Computer Science (ICIECS), December 2010.

[17] J.A. Belloch, A.M. Vidal, F.J. Martinez-Zaldivar, A.
Gonzalez, “Multichannel acoustic signal processing on
GPU”, 10th International Conference on Computatio-
nal and Mathematical Methods in Science and Enginee-
ring, Vol 1, pag 181-187,June 2010.

[18] J.A. Belloch, A. Gonzalez, A.M. Vidal, F.J. Martinez-
Zaldivar, “Real-time Multichannel Audio Convolution”,
GPU Technology Conference (GTC 2010),
http://nvidia.com/content/GTC-
2010/flvs/2116 GTC2010.mp4

505

