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ABSTRACT

Although the well-known task of image segmentation which parti-
tions the image into separated areas including different objects is
part of almost every image processing application it still remains
challenging. In the early 90’s level set methods became a popu-
lar framework for front propagation methods like active contours
(ACs) including edge-based and region-based models. Due to the
optimization in a local manner those methods lead to segmentation
results which depend on the initialization. While edge-based mod-
els are commonly known to be very sensitive to the initialization in
noisy and realistic images, the initializing of region-based models
are expected to be much more robust to varying initialization. In
this paper we investigate the parameter robustness of different edge-
based models concerning different initializations for synthetic and
real images containing Gaussian noise with different noise levels.
We show that the robustness of region-based ACs can be signifi-
cantly increased by image data driven initializations. We compare
the segmentation results of different models on synthetic and real
images with respect to the Dice coefficient.

1. INTRODUCTION

The partitioning of an image into different areas which contain
different objects of the scene is the task of image segmentation. Al-
though it has to be done in nearly every application including image
processing, it remains challenging and is still part of actual research.
The approach of image segmentation using front propagation was
first introduced as Snakes by Kass et al. [1] in 1988. This model
resulted in an energy functional which includes an external energy
term driving the contour to large image gradients and an internal
energy regarding the contours length and stiffness. Snakes were
successfully used in different applications (see [2, 3, 4, 5]) despite
several drawbacks, such as the inability of allowing topological
changes, noise sensitivity and strong dependency on the initializa-
tion (cf. [6]).

In [7] Osher and Sethian introduced a level set formalism which is
able to allow topological changes. Casselles et al. [8] and Malladi
et al. [9] integrated this formalism for image segmentation applica-
tions. As written in [6] the problem of solving the energy functional
still remains a local optimization problem and the initialization has
significant influence of the resulting segmentation for many realistic
images.

In 1996 Zhu and Yuille introduced a novel approach using region-
based active contours (ACs) considering segmentation as probabilis-
tic partitioning problem in [10] and Chan and Vese combined this
approach with the level set methods in [11]. As written in [6] region-
based ACs are expected to be more independent on the initialization
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and more robust against noise.

To our best knowledge there exist no comparative study concerning
the influence of different initialization methods for region-based
ACs using level sets to the parameter robustness of level set methods
in noisy images. In [12, 13] we showed that segmentation using
region-based ACs are sensitive to initializations.

The outline of this paper is as follows: In Section 2 we introduce
our image model and in Section 3 we give a brief introduction into
the initialization methods we take into account for our experimental
results. The basic idea of region-based ACs is shown in Section
4 and in the subsequent sections we will introduce the region-
based methods used for evaluation. After introducing the level set
algorithm and its parameters in Section 5 we provide experimen-
tal results for synthetic and real images containing different amount
of noise in Section 6. Section 7 finalizes this paper with conclusions.

2. IMAGE MODEL

The image model that we use is strongly re-
lated to the model introduced in [13]. Let
uQ L, x Ly — R the undistorted image with

L, = {1,2,...,N;} and L, = {1,2,...,N,}. We assume
that uo contains N € [2, N, - N,] objects w; with j € [1, N]:

N
uo (k1) = fu; (k,1) (1)
i=1

for k € [1, N;] and I € [1, Ny]. The function f,; is determined by

B Fj (k,l) k,linside of w;
Fuy (k1) = { 0" ofherwise . @
with
F;, ~N (uwj : oi,-) : G

Extending the model with additive independent identically dis-
tributed Gaussian noise N (0, 012\]) which leads to the distorted image

Uo by substition of F'; in (2) by f‘j with

F, NN(,Lij,CTf,]. —|—c712\7) . @)

3. INITIALIZATION METHODS

Initialization methods (IMs) for ACs can be divided into data inde-
pendent initializations (DIIs) which take no image data into account
and the data driven initializations (DDIs) which initialize the ACs by



analyzing the image content. In Sections 3.1 and 3.2 we introduce
the different IMs compared in this work. We point out that we do
not focus on developing new initialization methods but on compar-
ing DIIs with DDIs.

3.1. Data Independent Initializations (DIIs)

The most common IM:s for initialization of ACs are data independent
initializations, namely enveloping initialization (EI) and regular grid
initialization (RGI). For EI a circle with radius r g or a square with
side length wg; is placed centered on the image. rgr or wgr are
chosen to envelop most of the image (cf. [11, 14]). For the RGI small
circles with radius rrer or squares with width wrey are placed in
a regular grid with pitch d,,q- on the image for the initial contours
(ICs) with dypaz > 2 - 7 OF dimaz > w; respectively (cf. [15, 16]).

3.2. Data Driven Initializations (DDIs)

Up to now there exist just few data driven initializations. If the DIIs
fail it is common to use manual initializations if possible. Further
DDIs are introduced in our previous works [12, 13]. In this work we
use for data driven initializations a modified RGI (MRGI) which just
includes circles which are located on the same object.

4. REGION-BASED ACTIVE CONTOURS

This section gives a short introduction into region-based ACs fol-
lowed by detailed informations of the different region-based meth-
ods used in this work.

As written in [15] and [6] region-based ACs can be derived from the
Bayes rule expressing the conditional probability p for partition P of
the image plane €2 for a given image U:

p(P(R2)|U) xx p(UIP(2)) - p(P(R)) . Q)

The first term denotes the likelihood including the image based im-
pact (data dependent term) and the second term is the prior contain-
ing image independent information of which partition is more likely
(smoothing term). The prior is often chosen to prefer short contour
length |C|:

p(P(£2)) o e ¥I¢ (6)

with v being a positive weighting constant. Taking the widely used
assumption into account, that pixels within each region are indepen-
dent, the likelihood can be expressed as:

N
p(UIP(Q) =[] r(Ul), @
i=1
with Q@ = {Q4, ... Qn}. Maximization of (5) is equivalent to mini-
mizing of
N
E@==>| > lpuk))|+vid. ®

i=1 | k,leQ;

while p; is the probability density function (PDF) of region €2;. If the
partition of the image is accurate and €2; equals the area containing
w; only, p; = pu J which is the PDF of F';.

4.1. Chan and Vese (CV)

A special case for region-based ACs is the energy definition based
on a two phase piecewise constant model introduced by Chan and
Vese in [11]. The functional (8) changes to:

2

E@==% |\ > lutkh)—cl*| +v|Cl+p ) .

k,leQ; k,l€Q

®
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with Q; enveloped by the contour C. As recommended by the au-
thors we choose \1 = A\» 1 and additionally we set x = 0 to
be comparable to the other region-based ACs. Doing this (9) can be
derived from (8) for p; being a unimodal gaussian distribution and
o1 = o2. The values of c; are determined by

> u(k,D)
o — k,lEQ;

(10)

k,1EQ;

4.2. Parametric Region-Based (RB)

In order to minimize (8) an estimation of the unknown PDFs p; is
required. In many applications ([10, 17, 18]) p; is assumed to be a
unimodal Gaussian distribution

pi ~ N (no,,08,) » (11)
with po,, Uéi being the empirical mean and variance of region 2;
respectively.

4.3. Nonparametric Region-Based (NRB)

Estimating p; in a nonparametric manner for region-based ACs is
seldom and only few literature exist (cf. [19, 20]). We use in this
paper the nonparametric density estimation based on histograms as
it was done by Comaniciu et al. in [21]:

> X(u(k,0),1)

k,leQ;

Dinist (I) = ) (12)
>
Q;
with I = {Imin7 Lin + A[, e, [maz} and
1 IT—-05A;<T<I+05A;
X (I’ I) o { 0 otherwise. (13)

5. LEVEL SET ALGORITHM

Since their introduction in 1988 level sets have become very popu-
lar and simultaneously many level set algorithms of different types
have been developed. They differ in representation of the curve (im-
plicitly or explicitly), update domain (global or narrow band) or seg-
mentation type (two phase or multiphase). An overview is given by
Shi and Karl in [22]. We decided to choose an algorithm which has
an implicit representation of the curve with a narrow band updat-
ing domain for two phase segmentation. The used algorithm is the
real-time algorithm for curve evolution introduced by Shi and Karl
in [22]. This algorithm uses four different parameters, namely N,
Na, Ns and 0. While N, and o control the size and bandwidth of
the smoothness done by Gaussian filtering, /N, is the count of evo-
lution steps driven by the data dependent term, and N the count of
evolution steps driven by the smoothing term. Due to the fact that
N controls only the size of the Gaussian filter its influence is neg-
ligible for the segmentation result, if its size is chosen to be at least
3 Omaz-

6. EXPERIMENTAL RESULTS

In this Section we provide experimental results for the segmenta-
tions depending on the initializations, parameters of the level set al-
gorithm, and different kind of images including varying noise levels.
The images were scaled to [0, 1] before adding the noise. Due to
the computational costs the images were chosen to have a maximum
size of 128 x 128 pz?. For all experiments the parameters of the
level set algorithm were varying independently as follows:

e o ={1,15,...,5} with N, = 15
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Fig. 1. Rows (1) to (2) show the synthetic images U1,1, Uz 1 (a) re-
spectively, U1 2, Uz 2 (b) respectively, U1 3, Uz, 3 (c) respectively.
Rows (3) to (4) show the real images Us 1, U4, 1 (a) respectively,
Us,2, Uy 2 (b) respectively, Us 3, Uy, 3 (c) respectively.

e N, ={10,14,...,50}

e N, ={1,2,...,9}.
This lead to 891 segmentations for each image. The parameter
ranges were chosen to provide accurate results for the mean values
of the parameters. We compare the results of segmentations for the
region-based methods CV, RB, and NRB using the different initial-
izations EI, RGI, and MRGI with respect to the mean and variation
of the Dice coefficient (see Section 6.1).
The different initializations used for the experiments are shown
in Fig. 2. The EI initialization includes a circular region with
rer = 62px. The RGI contains 81 circles with rrgr = 6pz and
dmaz = 14px. The MRGI uses the same radius and pitch as the RGI
but only circles containing the same object were considered. These
initializations were equal for every noise level and every image.

6.1. Dice Coefficient (DC)

The quality of the segmentation result is determined by the Dice
coefficient introduced by Dice in [23]

DC (57191) = Tﬁ‘?:rmll (14)
1

+ [

with Q4 being the segmented set of the respective algorithm and 2
is the reference set. |-| denotes the cardinality of the set. The DC
range is [0, 1] while one indicates a perfect segmentation.

6.2. Synthetic Images

For the experiments in this work we created two different synthetic
images, a circle and a quadrant image. They are shown in Rows
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Fig. 2. Initializations for the different images. Column (a): circle
image, Column (b): quadrant image, Column (c): river delta image,
Column (d): panorama image. Row (1): EI with circular shape, Row
(2): RGI with circular shape, Row (3): MRGI with circular shape.

(1) and (2) in Column (a) of Fig. 1. We added to the undistorted
images Uy 1 and Uz 1 two different levels of noise 0721,1 = 1and
0%,2 = 2.25 creating the images Uj 2 and Uj s, respectively.

The amount of brightness in the images of Fig. 3 is linear to the
segmentation error. Black areas in the images are indicating cor-
rect segmentations while white areas have always been segmented
wrong.

The images of Fig. 3 lead to the following results: It is obvious that
the most common used initialization for CV, the EI seems to be more
sensitive to parameter variation than using the RGI. The MRGI lead
for CV in particular for the quadrant images to worse results than the
RGIL

Using RB the result is different to CV as it is shown in the second
block Parametric Region-Based of Fig. 3. The differences between
EI and MRGI are negligible while RGI seems to be very sensitive to
parameter variation.

The third block Nonparametric Region-Based of Fig. 3 shows that
RGI and MRGI lead to similar results while MRGI performs slightly
better for the quadrant image and RGI for the circle image respec-
tively. The EI shows for the quadrant image very high sensitivity to
the parameter variation. In Fig. 4 the DC PDFs for CV in (a), RB
in (b), and NRB in (c) with all initialization variants for all images
are shown. The diagrams show that MRGI performs best or similar
to the best initialization method for RB and NRB with respect to the
mean and variance of DC. For CV the performance of EI and MRGI
are similar but they are outperformed by RGI.

6.3. Real Images

The experiments for evaluation of the parameter robustness for real
images were done on two images which are supposed to fit our image
model. The original images and there reference segmentation were
selected from the Berkeley segmentation dataset'. We take these im-
ages as undistorted images although they contain noise due to the
fact that they are real images. We crop a part of image 55067.jpg
and also from 7/76035.jpg and converted both to gray level images
Usz,1 and Uy, 1 as shown in Rows (3) and (4) of Fig. 1. We added to
the undistorted images Usg 1 and Uy 1 two different levels of noise

072171 = 0.25and 0,2172 = 1 creating the images Uj 2 and U; 3 which

Thttp://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Fig. 3. Images showing the variation of the different methods and
different initializations for Uy 2, Uy 3, U2 2, and Uz 3 in Columns
(a), (b), (c), and (d) respectively.

are shown in Columns (b) and (c¢) in Rows (3) and (4) of Fig. 1.
The images of Fig. 3 lead to the following results: The CV method
performs best with the EI for all images with slightly better perfor-
mance then RGI. The main difference to MRGI is the segmentation
variation of image Us 3 where MRGI lead to worse results.

The RB method performs best with the EI with little advances to
MRGI. The RGI lead to the worst performance in particular for the
higher amount of noise in Uz 3 and Uy 3.

For the nonparametric region-based method the segmentation varia-
tion between the different initialization methods is similar for Us 2
and Uy 2. For Ug 3 RGI performs worst with very high segmenta-
tion variation and for U4 3 EI performs better than MRGI and RGi
which perferms worst.
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Fig. 4. Estimated DC PDFs for the different region-based methods
and initializations based on 3564 segmentations.

7. CONCLUSIONS

In this paper we showed the impact of initialization for region-based
active contours. We compare a data dependent initialization method,
namely the modified regular grid initialization, with state of the art
initialization methods, namely the enveloping initialization and regu-
lar grid initialization, which are data independent initializations. We
take three different region-based active contours methods into ac-
count: the CV which is based on a piecewise constant model, the RB
which uses parametric density estimations, and the NRB using non-
parametric density estimations. Experimental results on synthetic
and real images containing different noise levels showed that the CV
method is much more robust to parameter variation using RGI than
MRGI or EI For the RB and NRB methods the MRGI performs best
or with slightly differences to the respective best method.
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