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ABSTRACT
A new Galois field GF

(
2N

)
structure for designing re-

cursive systematic convolutional (RSC) encoders is pre-
sented in this article. The proposed RSC encoders are
used as components of a parallel-concatenated Turbo
trellis coded modulation (TTCM) scheme. The GF

(
2N

)
RSC encoders include a nonlinear function named left-
circulate (LCIRC), which is performing a left circulation
over the N bits representation word. A closed-form ex-
pression was found for the minimum Euclidian distance
of rate (N − 1) /N LCIRC-RSC encoders for

(
2N

)
-ary

PSK-TCM, and its values show that these RSC-LCIRC
encoders are optimum, having the same performances as
the corresponding conventional binary encoders. How-
ever, the RSC-LCIRC encoders are less complex than
the corresponding binary encoders for a given encoding
rate. TTCM transmission schemes with optimum RSC-
LCIRC component encoders are investigated using the
iterative symbol-by-symbol log-MAP decoding algorithm
and symbol puncturing. The bit error rate (BER) is es-
timated by simulation for the proposed TTCM scheme
with 8-PSK modulation when transmitting over additive
white Gaussian noise (AWGN) channel.

1. INTRODUCTION

Channel encoded transmissions are used in all systems
nowadays. Several types of channel encoding methods
were proposed during the last decades. Almost all cod-
ing methods known in the literature use linear functions.
The nonlinear functions were used lately in chaotic se-
quence generators to increase the security of communi-
cations systems. In [1] Frey proposed a nonlinear digital
infinite impulse response (IIR) filter for secure commu-
nications. The Frey filter contains a nonlinear function
named left-circulate function (LCIRC), which is used
as typical basic accumulator operation in microproces-
sors. The above mentioned work considered the Frey
encoder as a digital filter, operating over Galois field
GF

(
2N

)
. In [2] it was demonstrated that the Frey en-

coder with finite precision (wordlength of N bits) pre-
sented in [1] is a recursive convolutional encoder operat-
ing over GF

(
2N

)
). New methods for enhancing the per-

formances of the phase shift keying - trellis-coded mod-
ulation (PSK-TCM) transmissions over a noisy channel
using the recursive convolutional LCIRC (RC-LCIRC)

encoders were proposed in [3]. These encoders follow
the rules proposed by Ungerboeck [4] for defining op-
timum TCM by proper set partitioning. The turbo
coding scheme introduced by Berrou and Glavieux in
[5] allow communications systems performances close to
the Shannon limit, by concatenating in parallel recur-
sive convolutional encoders in the transmitter and us-
ing iterative decoding algorithms in the receiver. Turbo
schemes were developed as well for the TCM schemes
[6]-[9].

In the present work, an improved version of the RC-
LCIRC encoder from [3] is proposed. The encoder im-
provements consist in making it systematic and adapt-
ing it for a parallel turbo TCM (TTCM) transmission
scheme. As compared to the TTCM scheme analyzed
in [9] operating at low coding rates due to the lack
of puncturing, the present paper introduces specific in-
terleaving and puncturing methods for TTCM scheme.
Moreover, the conventional logarithmic Maximum A-
posteriori Probability (log-MAP) decoding algorithm is
modified to operate in a symbol-by-symbol manner for
punctured received sequences, following the method pre-
sented in [6] and [7]. The optimum set partitioning
method is used for PSK punctured TTCM schemes.
The performances of this scheme are analyzed in case of
transmitting over a channel with additive white Gaus-
sian noise (AWGN).

The paper is organized as follows. Section 2
is presenting the recursive systematic convolutional
LCIRC (RSC-LCIRC) encoder operating over Galois
field GF

(
2N

)
and the optimum set partitioning for PSK

modulation. In Section 3, a parallel TTCM transmission
scheme using RSC-LCIRC component encoders with
symbol puncturing is presented. A symbol-by-symbol
log-MAP algorithm is used for the iterative detection.
The simulated bit error rate (BER) performances in
AWGN are presented and analyzed in Section 4 for
the punctured 8-PSK TTCM transmission using three
different interleaver sizes. Finally, the conclusions are
drawn and perspectives are presented in Section 5.

2. OPTIMUM RSC-LCIRC ENCODER FOR
TCM SCHEMES

In this section, a new family of RSC encoders oper-
ating over Galois field GF

(
2N

)
and their use for op-
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Figure 1: Rate (N − 1)/N optimum GF(2N ) RSC-
LCIRC encoder.

timum TCM schemes are presented. The main com-
ponent of the RSC encoder presented in the sequel is
the nonlinear LCIRC function introduced by Frey in [1]
for chaotic encryption. The use of the LCIRC func-
tion for channel encoding was considered for the first
time in [2]. Optimum encoders using the LCIRC func-
tion for TCM schemes were introduced in [3]. However,
despite being characterized by optimum Euclidian dis-
tances, these recursive convolutional encoders are non-
systematic. Therefore, the coding performances of these
non-systematic encoders are not optimum when used
in turbo schemes. In this section, we introduce a new
encoder operating over Galois field GF

(
2N

)
, using the

LCIRC function, which is systematic, i.e. the encoder
output value specifies explicitly the input value. Let
us denote by N the wordlength used for binary rep-
resentation of each sample. The LCIRC function per-
forms a bit rotation by placing the most significant bit
to the least significant bit, and shifting the other N − 1
bits one position to a higher significance. The block
scheme for a rate (N − 1) /N optimum RSC-LCIRC en-
coder, using one delay element and the LCIRC function
is presented in Fig. 1. For each moment n, un repre-
sents the input data sample, x1n denotes the delay out-
put or the encoder current state, and en is the output
sample. The superscript U denotes that all the sam-
ples are represented in unsigned N bits wordlength, i.e.,
uU
n ∈

[
0, 2N−1 − 1

]
, eUn ∈

[
0, 2N − 1

]
. The encoding

rate for the encoder in Fig. 1 is the ratio between the in-
put wordlength Nin = N−1 and the output wordlength
N , i.e., R = Nin/N [2]. LCIRCN−1 represents the
LCIRC function application for N − 1 times consecu-
tively. Both adders and the multiplier are modulo-2N

operators. The modulo-2 block extracts the least signif-
icant bit, denoted by pn, from the encoder current state
value, x1n. pn is the parity bit for the systematic rate
(N − 1) /N encoder.

It is important to demonstrate that the encoder is
systematic, i.e., the encoder output binary representa-
tion codeword eUn includes the representation codeword
of the encoder input uU

n . Hence, the output is obtained
by shifting the N − 1 bits of the input representation
codeword by one position to a higher significance, and
adding the parity bit pn to the least significant position,
a position that was left empty inside the N bits output
codeword by the previously mentioned shifting. The
one position shifting presented above is equivalent by
a multiplication by 2 in the GF

(
2N

)
field. Therefore,

the encoder output value eUn is given by the following
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Figure 2: Optimum set partitioning for punctured 8-
PSK TTCM.

Table 1: Minimum 2N -ary PSK-TCM distances as func-
tion of N for optimum GF(2N ) RSC-LCIRC encoders.

N R Modulation d2E
2 1/2 QPSK 10

3 2/3 8-PSK ≈ 4.5858

4 3/4 16-PSK ≈ 1.3238

GF
(
2N

)
equation:

eUn = 2 · uU
n + pn = 2 · uU

n + xU
1nmod2 (1)

The trellis complexity of the codes generated with the
scheme in Fig. 1 increases with the wordlength N , be-
cause the number of trellis states grows exponentially
with the output wordlength, i.e., 2N , while the number
of transitions originating from and ending in the same
state grows exponentially with the input wordlength,
i.e., 2N−1.

The optimum set partitioning for the punctured
TTCM scheme was introduced in [6], and has two fea-
tures. First of all, the set partitioning follows the Unger-
boeck optimum set partitioning rules from [4], and sec-
ondly, the constellation points associated to the same
group of N − 1 systematic information bits, i.e., to the
same input symbol uU

n , but differing in the least sig-
nificant bit, i.e., the parity bit pn, should be placed at
the minimum distance in the set, ∆0,2N−arymodulation.
Following these two requirements, the optimum set par-
titioning rule for 8-PSK is depicted in Fig. 2. The first
feature maximizes the minimum Euclidian distance of
the component TCM code, while the second feature min-
imizes the distance between elements of the subsets as-
sociated to identical systematic bits, denoted by ovals
in Fig. 2, for the global punctured TTCM code. It can
be easily demonstrated that the minimum Euclidian dis-
tance for the 2N -ary TCM component encoder presented
in Fig. 1, using the optimum constellation as in Fig. 2,
has the following expression:

d2E,R=(N−1)/N = 2 ·∆2
1,2N−PSK +∆2

0,2N−PSK (2)

In Table 1, there are presented a few values of the
minimum distances of the TCM encoder in Fig. 1 for dif-
ferent values of N and for the PSK constellation. The
associated coding rates are presented in the second col-
umn. It can be easily noticed from (2) that all the rate
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Figure 3: TTCM transmitter with RSC-LCIRC en-
coders and symbol puncturing.

(N − 1) /N , for any N value, the optimum RSC-LCIRC
encoders are offering the same minimum distance as the
corresponding binary optimum encoders determined by
Robertson in [6], and Vucetic in [7]. In addition, the
GF

(
2N

)
optimum RSC-LCIRC encoders are less com-

plex than the corresponding binary encoders in terms of
memory usage. The memory size of the binary encoders
increases logarithmically with the number of states in
the trellis, while the GF

(
2N

)
optimum RSC-LCIRC en-

coders include only one delay element, no matter what
the trellis complexity is. As another advantage of these
encoders, we can also mention the Euclidian distance
compact expression (2) as a function of N .

3. RSC-LCIRC ENCODER IN TURBO-TCM
SCHEME

Fig. 3 shows the turbo TCM transmitter for 2N -ary
PSK modulation. The information 2N−1-ary symbol se-
quence un and its block-wise interleaved version u(i)

n are
fed into two identical component encoders RSC-LCIRC1

and RSC-LCIRC2 of rate (N − 1) /N . The encoders’
outputs are selected alternatively and mapped into 2N -
ary modulated symbol sequence xn. The output of the
bottom encoder is deinterleaved according to the in-
verse operation of the interleaver. This ensures that
at the input of the symbol selector, the N − 1 informa-
tion bits from the 2N−1-ary input symbol, partly defin-
ing the encoded 2N -ary symbols of both the upper and
lower input, are identical [6]. Therefore, if the selector
is switched on a symbol base, the mapper output is a
punctured version of the two encoded sequences, and
the N − 1 information bits appear only once, mapped
in a single transmitted symbol selected either from e1n
sequence or from e2n sequence. Nevertheless, the re-
maining parity bit carried by the transmitted symbol is
taken alternatively from the upper and lower encoder.
Hence, the overall coding rate for the scheme in Fig. 3 is
(N − 1) /N . The 2N -levels modulated symbol sequence
is transmitted over an AWGN noisy channel. The re-
ceived signal over the n-th symbol interval is given by:

yn = xn + wn (3)

where wn is a zero-mean complex AWGN sequence
with E

[
|wn|2

]
= N0, and xn denotes the 2N -levels sym-

bol value mapped from the encoders output sequences

yn
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Figure 4: TTCM receiver using symbol log-MAP de-
coders and puncturing.

(e1n, e2n) by puncturing over the n-th symbol interval.
The receiver structure, shown in Fig. 4, has two com-
ponent decoders that use the symbol-by-symbol log-
MAP algorithm introduced in [6]. The decoding pro-
cess is similar to the binary turbo decoding in [5], ex-
cept that the symbol probability is used as the extrin-
sic information rather than the bit probability [6], [7].
The log-MAP decoder computes the log likelihood ra-
tio (LLR) for each group of information bits transmit-
ted at the n-th symbol interval un, embedded in the
2N−1-ary input symbol taking one of the integer values
j ∈ {0, 1, ..., 2N−1 − 1} as [7]

L (un = j) = log
P (un = j|y)
P (un = 0|y)

= log

∑
(l′,l)∈Bj

n
αn−1 (l

′) γj
n (l

′, l)βn (l)∑
(l′,l)∈B0

n
αn−1 (l′) γ0

n (l
′, l)βn (l)

(4)

where y is the received signal vector, Bnj represents
the set of trellis transitions at the n-th symbol inter-
val determined by an input symbol un = j, denoted as
(Sn−1 = l′ → Sn = l) where Sn is the trellis state at mo-
ment n, and the probabilities αn (l), βn (l), and γn (l

′, l),
denoting the forward, backward, and the transition met-
rics, are computed recursively as in [7]. The symbol-
by-symbol log-MAP decoder operates on an L symbols
block basis. Hence, in all equations the symbol time
variable n takes values between 1 and L. The receiver
transition metric is given by:

γj
n (l

′, l) =

{
P (un=j)
P (un=0)

exp

(
−

|yn − xn|2

2σ2

)
, if

(
l′, l

)
∈ Bj

n

0, otherwise
(5)

The transition metric in (5) is normalized over all input
symbol values, as follows:

γn (l
′, l) = log

2N−1−1∑
j=0

γj
n (l

′, l) (6)

The first term in (5) denotes the apriori information for
the transmitted input symbol j. The number of trellis
states for each component RSC-LCIRC encoder is 2N .
The forward normalized metric is estimated as following:

αn (l) = log

2N−1∑
l′=0

exp [αn−1 (l
′) + γn (l

′, l)] (7)
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The recurrence in (7) is initialized with

α0(0) = 0; α0(l)|l ̸=0 = −∞ (8)

The backward normalized metric is estimated as:

βn (l) = log
2N−1∑
l′=0

exp [βn+1 (l
′) + γn+1 (l

′, l)] (9)

and the recurrence in (9) is initialized with

βL(0) = 0; βL(l)|l ̸=0 = −∞ (10)

The input symbol j with the largest LLR in (4) is
chosen as the hard decision output.

In contrast to the binary turbo codes, in TTCM case
we can not separate the influence of the information and
parity-check components within one symbol. The sys-
tematic information and the extrinsic information are
not independent. Thus, both systematic and extrinsic
information will be exchanged between the two com-
ponent decoders. The joint extrinsic and systematic
information of the first log-MAP decoder, denoted as
L1,es(un = j), is computed as

L1,es (un = j) = L1 (un = j)− log
P (un = j)

P (un = 0)
(11)

The last term in (11) represents the a priori information
symbol knowledge fed by the other decoder.

The joint extrinsic and systematic information
L1,es (un = j) is used as the estimate of the a priori LLR
at the next decoding stage. After interleaving this term

is denoted as L
(i)
1,es (un = j). The joint extrinsic and sys-

tematic information of the second decoder is given by

L2,es(un = j) = L2(un = j)− L
(i)
1,es(un = j) (12)

In the next iteration the a priori term in (11) is replaced
by the deinterleaved joint extrinsic and systematic in-
formation from the second decoding stage, denoted as

L
(i)
2,es (un = j).
It must be stated that for the symbol-by-symbol log-

MAP decoding, each component decoder should avoid
using the same systematic information twice in every
iterative decoding step. In TTCM scheme, each de-
coder alternately receives the noisy output of its own
encoder and that of the other encoder. As mentioned
before, the parity bit in every second received symbol
was generated by the other encoder, due to the sym-
bol puncturing in the transmitter. The decoder ignores
this symbol by setting the branch metric to zero. The
only input at this decoding step consists in the a pri-
ori component obtained from the other decoder, which
contains the systematic information. All the mentioned
LLRs and the relations between them are represented in
the TTCM receiver scheme from Fig. 4.

The iterative metric computation presented above
assumes that the a priori LLR is already available. Nev-
ertheless, in the first iteration, the a priori LLR for the

first decoder is unavailable. Considering the symbol
mapping presented in Fig. 2, the a priori information
for the first decoder regarding the punctured symbols,
i.e., the input symbols encoded by the second encoder
and transmitted in the even positions n, is determined
partially by the systematic information input symbol
un, and also by the unknown parity bit pn ∈ {0, 1} gen-
erated by the second encoder (see equation (1)). Using
the mixed Bayes’ rule the a priori probability is given
by [6]

P (un = j) = const ·
∑

k∈{0,1}

p(yn|un = j, pn = k)

= const ·
∑

k∈{0,1}

exp

(
−|yn − xj, k

n |2

2σ2

) (13)

where const is a constant value, assuming that all the
values of un and pn are equally probable, and the
2N -ary modulated symbol xn, transmitted by the sec-
ond encoder, is given by xj,k

n = 2 · un + pn = 2 · j + k.
The a priori LLR is computed by normalizing the val-
ues in (13)) by their sum estimated for all the val-
ues of j ∈ {0, 1, ..., 2N−1 − 1}. If the first decoder op-
erates over the odd symbols xn, the a priori LLR is
initialized with equally probable values assuming that
Pr (un = j) = 1/2N−1.

4. SIMULATIONS RESULTS

The TTCM scheme presented in Section 3 using the
RSC-LCIRC encoders presented in Section 2 was tested
for 8-PSK modulation by means of simulations over
an AWGN channel. Both component encoders in the
TTCM scheme are identical rate-2/3 RSC-LCIRC en-
coders. The modulation is using the optimum set par-
titioning for the punctured TTCM scheme as presented
in Section 2. The symbol interleavers used for simu-
lations are pseudo-random and operate independently
on even and odd positions, respectively, as presented
in [6]. The symbol-by-symbol log-MAP decoding al-
gorithm is used in the receiver. Each of the following
simulation results is represented as BER performances
versus Es/N0, where Es is the signal energy per symbol
and N0 is the variance of the AWGN noise sequence.
The interleaver block includes 1024 symbols and the
number of decoding iterations is eight. Further itera-
tions do not improve significantly the detector perfor-
mances. The BER performances for TTCM transmis-
sion using 8-PSK with bandwidth efficiency of 2b/s/Hz
are represented in Fig. 5. As a reference, we consid-
ered for the same simulation scenario the corresponding
rate-2/3 optimum binary encoder with 8 states, deter-
mined in [6] for 8-PSK TTCM with the generator poly-
nomials in ascending order, represented in octal nota-
tion [11, 02, 04]. The simulation results show a perfect
match of the BER performances between the rate-2/3
RSC-LCIRC encoder and its binary counterpart. This
is explained by the fact that both encoders have similar
trellises with identical minimum Euclidian distance val-
ues. The common minimum Euclidian distance is pre-
sented in Table 1. Eight iterations are enough to reach
a BER of 3 · 10−5 for Es/N0 = 7.2dB. In Fig. 6 BER
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Figure 5: BER performance for punctured 8-PSK-
TTCM scheme using RSC-LCIRC encoders over an
AWGN channel.

performances after eight iterations, for the same mod-
ulation schemes, are depicted when the interleaver size
is varied. Therefore, the interleaver block is including
consecutively 512, 1024, and 2048 symbols. When the
interleaver size is doubled a coding gain of approxima-
tively 0.4dB is obtained.

5. CONCLUSIONS AND PERSPECTIVES

It was shown that the proposed optimum RSC-LCIRC
encoder can be used as a component encoder in turbo-
TCM schemes with punctured parity check bits (sym-
bols). Also, due to the inner non-binary operation of the
RSC-LCIRC encoder, the symbol-by-symbol log-MAP
algorithm proves to be suitable for iterative decoding.
The nonlinear LCIRC function drives to low complex-
ity encoder, while the systematic property attains good
performances in punctured schemes. Another advantage
of this generalized encoder consists in the compact ex-
pression for the minimum Euclidian distance for PSK-
TCM encoders, as function of the symbol representa-
tion wordlength N . In further studies it is necessary
to evaluate the actual complexity gain over the binary
encoding counterparts. Also, the performances of these
turbo TCM schemes should be investigated using EXIT
charts. In addition, the scheme performances analysis
when transmitting over a channel with fading requires
further attention.
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