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ABSTRACT

Among the recent solutions for Peer-to-Peer video streaming, Mul-
tiple Description Coding (MDC) has proved to be an effective solu-
tion since it is able to support high flexibility in the network topol-
ogy and to grant an interruption-free fruition of multimedia con-
tents. However, the presence of losses and congestions on the dif-
ferent links may preclude the reconstruction of the transmitted se-
quence at the end terminal with a satisfying visual quality. Differen-
tiating the Quality-of-Service levels permits mitigating these incon-
veniences but requires distributed packet classifications performed
by each peer independently. The packet labelling can be modelled
via cooperative games where the different uploading nodes are play-
ers/descriptions competing for the available network resources. Re-
cent results have shown that cooperative strategies perform better in
terms of Quality-of-Experience with respect to non-cooperative and
state-of-the-art packet labelling strategies.

1. INTRODUCTION

The streaming of video contents over Peer-To-Peer (P2P) has been
an interesting investigation issue for both academic and industrial
world. As a natural consequence, research activity has been ded-
icated worldwide to the development of novel video coding archi-
tectures that fit the characteristics of P2P systems.

Some of the proposed solutions rely on a scalable coding, where
the input video stream is coded into different hierarchical layers
that are uploaded in the network by different peers. The number of
uploading peers and the protection levels are adapted according to
the significance of packets in the decoding process (i.e., according
to the layer they belong to).

A possible alternative is offered by Multiple Description (MD)
architectures [1], which have proved to be an effective solution for
a continuous and flexible live streaming of multimedia contents
(above all for multi-tree P2P networks). MD solutions prove to suit
the varying topologies of P2P networks, the heterogeneity of band-
width availability among the different links, the asymmetry between
the uploading and downloading capabilities, and the possible loss of
information.

In MD coding (MDC) the original video source is represented
by several correlated data streams (descriptions) that are indepen-
dently coded and transmitted to the receiver over independent chan-
nels [2]. In case one or more descriptions are missing because of
packet losses or limited bandwidth availability, the correlation that
links the different MD streams allows estimating the missing de-
scriptions. Whenever all the descriptions are available at the de-
coder, the sequence can be reconstructed at full coding quality; in
case some data are missing, the visual quality of the reconstructed
sequence gracefully degrades. Note that each description is equally
important, and as a matter of fact, the quality of the reconstructed
sequence depends only on the number and not on the particular sub-
set of correctly-received descriptions. This coding strategy proves
to be extremely effective in granting a minimum level of Quality-of-
Service (QoS) to the end user since the fruition of the transmitted
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multimedia content is still possible even with high churning rates
and packet losses. As a matter of fact, it proves to be extremely
convenient in streaming video contents over P2P networks.

Experimental results have shown that the effectiveness of such
approaches varies according to how MD packets are routed and
transmitted [3]. Within P2P strategies, several approaches have
been proposed to find the optimal topology for the distribution trees
of each description. In [4] Wu et al. propose a delivery algorithm
to maximize the number of descriptions received by the terminal
nodes. Other solutions rely on an effective building of multiple de-
livery trees [5]. It is worth noticing that these approaches imply
the election of a controller node that manages the P2P network and
finds out the optimal configuration.

Unfortunately, a centralized strategy proves to be ineffective to
grant some control over the Quality-of-Service (QoS) level of the
different streams. In fact, the central node needs to be updated
timely about network conditions and to propagate quickly the re-
quired configuration changes to the different peers. This task proves
to be quite hard to fulfill since the network could be quite heteroge-
neous and complex, and as a matter of fact, distributed QoS control
algorithms are needed [3].

To this purpose, Game Theory may provide some help in mod-
elling a distributed algorithm to classify MDC packets over a P2P
network. Game Theory (GT) has recently proved to be an inter-
esting theoretical framework to analyze and optimize resource al-
location problems in digital communication scenarios [6]. Starting
from the noncooperative strategy presented in [3], it is possible to
improve the performance of the algorithm by allowing a small de-
gree of cooperation between the uploading peers.

In this paper, we present a distributed packet classification strat-
egy based on a coalitional game. Each peer uploads a different de-
scription classifying its packets according to the network state (mea-
sured by the received RTCP packets, and therefore, related only to
its own data path) and the characteristics of the sequence to be trans-
mitted. Within this scenario, we allow couples of peers to commu-
nicate among each other exchanging partial information about the
network states and agreeing on a joint classification strategy. As
a consequence, it is possible to model the distributed classification
problem as a cooperative game and schedule the priority of pack-
ets analyzing the Nash equilibria. The goal of the player/peer is to
minimize the channel distortion affecting his/her own stream and
the final reconstructed sequence.

In the following, Section 2 presents the adopted MDC scheme,
and describes the problem of packet scheduling for MD coded
video. Some basic notions about game theory and the adopted
notation are presented in Section 3. Section 4 illustrates the pro-
posed classification strategies which, as simulation results in Sec-
tion 5 show, provide better results with respect to state-of-the-art
solutions. Conclusions are drawn in Section 6.

2. MULTIPLE DESCRIPTION VIDEO STREAMING
OVER PEER-TO-PEER NETWORKS

During the last years, several MD video coding schemes have been
proposed in literature with different efficiencies and computational
complexities. These strategies have proved to be extremely effec-
tive for the streaming of video contents over P2P networks. In order

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011  -  ISSN 2076-1465 1105



description 1

description 2

description 3

description 4

Figure 1: Multiple description coding based on a polyphase sub-
sampling

to test the effectiveness of our classification approach, we consid-
ered one of the first MDC schemes based on a polyphase spatial
subsampling of the pixels in a frame. The results obtained with this
scheme can be easily extended to other MDC approaches.

2.1 MDC based on polyphase subsampling

The MDC scheme we considered operates directly on the input
video signal coming from the camera, and it is based on the spatial
subsampling of phase-shifted frames of the original video sequence.

The input video frames are subsampled into four subsequences
with halved spatial resolution along both dimensions and different
phases (see Fig. 1). Each subsequence is then independently coded
by an H.264/AVC codec and uploaded in the network by separate
repositories (peers or servers). Whenever an end user requires the
downloading of the sequence and a delivery network has been de-
fined, each storage terminal starts transmitting the video packets to
the destination. In case all the descriptions are received, the coded
frame can be reconstructed without any further quality loss. In case
some parts or entire descriptions are missing, the MD concealment
unit can estimate the lost information via a simple bilinear interpo-
lation. In case all the descriptions have been lost, the missing data
are copied from the previously-decoded frame like in most of the
Single Description (SD) coding cases, which is less effective than
the MDC error concealment.

2.2 MDC packet scheduling in QoS-aware networks

In a network affected by packet losses, it is possible to mitigate
the channel distortion produced on the received video signal by rul-
ing the network access according to different QoS classes. Several
QoS-aware transmission and network access protocols have been
defined ([7, 8]), and their performance strongly depends on how
priority classes are assigned to the different packets. The Single-
Rate-Three-Colors-Markers (srTCM) approach [8] distributes pack-
ets among three classes according to the negotiated average bit rates.
However, when transmitting MD streams it is necessary to grant
a certain degree of diversity among the loss patterns affecting the
different descriptions (inter-stream diversity) [9]. In case the con-
gestion affects all the streams, the effectiveness of the MDC error
concealment algorithm relies on the fact that at least one descrip-
tion is available at the decoder, and therefore, the probability that
all the descriptions are lost has to be minimized by assigning dif-
ferent QoS classes to different streams and varying their relative
loss probability (inter-stream diversity). On the other hand, in case
the congestion affects a single description, it is necessary to iden-
tify those packets that are crucial in the decoding process and to
increase the assigned QoS level reducing the loss probability (intra-
stream diversity).

As for P2P networks, an optimal configuration can be achieved
by electing a controller node (e.g., one of the uploading peers)
that communicates with the different sources exchanging informa-
tion about the network status and the scheduling choices of the
other nodes. Unfortunately, these procedures are significantly time-
demanding and need a continuous update of the network states
along the different transmission paths (see [10]).

A faster solution can be obtained via a distributed classifica-
tion performed independently by the single uploading peers. In this
case, each source node is neither aware of the classification choices
of the other source nodes nor aware of where the congestions are
located. As a matter of fact, independent classification leads to con-
tentions between different MD streams since each peer is unaware

of the choices and the channel state of the other ones. It is possible
to analyze the classification problem via the theoretical framework
of game theory, which permits taking into account the behavior of
the other nodes and granting satisfying degrees of intra-stream and
inter-stream diversities in the loss patterns.

3. BASIC GAME THEORY NOTIONS AND NOTATION

A competitive behavior among a set of individuals can be repre-
sented by a “strategic game”, i.e., a model of interacting decision-
makers [11] that evaluates how each individual is affected by the
actions of the others. In analytical terms, the game is identified by
a set of n decision-makers (commonly-named “players”), a set Nc

of strategies available for each individual, and a set of preferences
for each player. The preferences (or utility) of the d-th player can
be parameterized by a pay-off (or cost) function fd(·), d = 1, . . . ,n,
which depends on the decisions of all the players, i.e.,

fd : N
n
c → R

fd : c=
[

c1, . . . ,cn
]

7→ p
(1)

where ch is the strategy chosen by the h-th player, h= 1, . . . ,n. As-
suming that players are rational and selfish, their main aim is max-
imizing (or minimizing) their pay-off (or cost) functions. However,
a blind choice that does not take into consideration the behaviors
of the other players may lead to inefficiencies whenever the game
presents conflicting configurations. Assuming that players can not
cooperate (noncooperative game), a conflict appears whenever a
player needs to decrease the utilities of the other players in order
to increase his/her own. As a matter of fact, the rationality of the
decision-makers lead towards some points of equilibrium, where
every player has no reasons to change his/her strategy as his/her
utility can not improve. These configurations are called Nash equi-
libria [11], and in analytical terms, an array of strategies c

∗ is a
Nash equilibrium if

fd
([

c
−d,∗,cd,∗

])

≤ fd
([

c
−d,∗,cd

])

∀d = 1, . . . ,n and ∀cd ∈ Nc,
(2)

where c−d is the array of strategies of all the players made exception
for the d-th, and fd(·) is a cost function. In this case, no other choice

allows player d to reduce fd(·), therefore, the strategy cd,∗ is the
best he/she can adopt. Note that this optimality must be verified for
all the players at the same time making c

∗ a stable configuration.
In case players d1 and d2 can cooperate and jointly plan their

strategies, it is possible to modify the original game by merging the
two players into a single player D that chooses his/her strategies
among a subset of Nc×Nc and rules his/her choices according to
a common cost function fD(·). In case of a nontransferable utility
(NTU) games, the cost function is the same for all the players in the
coalition, while in transferable utility (TU) games, there can be side
payments. In our approach, we consider the first case only.

In the following, we will show how it is possible to model the
distributedMDC packet classification with both noncooperative and
cooperative strategic games.

4. GAME THEORY APPLIED TOMDC PACKET
CLASSIFICATION

Given an MDC video sequence coded into n-descriptions, which
are stored into n separate servers or uploading peers, each source
node behaves like a player in an n-players game, where the d-th

player (description d) can choose his/her strategy (QoS class) cdi
for the i-th packet among a set Nc of Nc possible choices. The set
of strategies adopted by the n players can be represented by the ar-

ray ci =
[

c1i , . . . ,c
n
i

]

, and the individual cost function fd(·) for each
player d, d = 1, . . . ,n, can be characterized via some basic functions
related to the network state and the features of the coded sequence.
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In case players d1 and d2 cooperate to find a more effective clas-
sification strategy (coalition D), the cost function for the coalition
D is fD(ci). Note that the possible strategies for d1 and d2 (repre-

sented by the couples (cd1i ,cd2i ) are now to be chosen within the set
ND ⊂ Nc×Nc. In the following sections, these functions will be
described in detail.

4.1 Basic modelling functions

4.1.1 Characterizing packet loss probability for each class

As described before, the GT-based optimization requires some basic
functions to characterize the loss probability associated to the dif-
ferent QoS classes. In this approach, we adopted the modellization
presented in [10].

Each QoS class k can be characterized by a G/M/1/BM
k queue

model with maximum length BM
k (expressed in terms of maximum

number of packets) and with an emptying server modelled by a
Poisson process with parameter λk. Each class is also associated

to a transmission channel with loss probability Pchan
k

, which de-
pends on the parameter setting (e.g., the adopted channel code, the
transmission power, etc.) for the k-th QoS class, and the state of the
network.

When considering the best classification for the packets of de-

scription d, the loss percentages Ploss
k

, k = 0,1, . . . ,Nc− 1, are af-
fected by the channel parameters related to the k-th class, by the
parameter λk, and by the number of packets Bk buffered in the k-th
queue. More precisely, the probability of losing the i-th packet with

Bk < BM
k is

Ploss
k (ci) = Pchan

k +
(

1−Pchan
k

) γ(Bk,TL/λk)

Γ(Bk)
(3)

where ci is the classification array operated on the i-th packets of
all the descriptions, γ(·, ·) and Γ(·) are respectively the lower in-
complete and the standard Gamma functions, and the threshold TL
denotes the maximum time limit after which the packet is discarded
(in our case we have set TL to 0.2 s). For a more detailed description
of the derivation process of eq. (3), we refer the reader to the paper
[10].

In order to evaluate the optimality of a given configuration, it
is necessary to model the distortion produced in the reconstructed
video sequence by the loss of one or more descriptions. In the fol-
lowing subsections we will consider two different modelings for the
adopted MDC schemes.

4.1.2 Modelling distortion for the MDC scheme

In addition to a loss probability function that models the behaviour
of the channel, the optimization strategy requires an additional dis-
tortion measure that permits characterizing the expected quality of
the reconstructed sequence.

A possible distortion model for an MDC scheme based on spa-
tial polyphase subsampling can be found in [3]. In this case, it is

possible to parameterize the relative quality decrement δPSNRd
i as-

sociated to the loss of the i-th packet in description d as a linear
relation

δPSNRd
i =

PSNR−PSNRd
l,i

PSNR
= hdl,0+hdl,1ρd

i . (4)

The parameter PSNR in eq. (4) identifies the Peak Signal-to-Noise
Ratio value of the reconstructed frame in case all the packets are

correctly received, PSNRd
l,i is the PSNR value of the reconstructed

frame when the i-th packet is lost, ρd
i is the percentage of null

transform coefficients for the i-th packet of description d, and hdl, j
( j= 0,1) are the coefficients of the adopted linear distortion model.
These are estimated offline from a training set of sequences.

In case descriptions d1 and d2 form a coalition D, it is possible
to adopt a similar distortion model as in the case of losing a single

description. The relative quality decrement related to the loss of
both descriptions is

δPSNRD
i =

PSNR−PSNRD
l,i

PSNR
= kD0 +kD1 ρD

i (5)

where PSNRD
l,i is the PSNR value of the reconstructed frame after

losing descriptions d1 and d2 in D, ρD
i is the average of ρd1

i and

ρd2
i , and kD0 , k

D
1 are the coefficients of the linear model that param-

eterizes the distortion.

4.1.3 Building the cost functions

Given the distortion and loss probability function, it is possible to
build the cost functions fd and fD in order to relate the channel
distortion to ci and model the classification problem as a game.

From the distortion model in eq. (4), it is possible to define
the individual cost function for the d-th description as the expected
relative PSNR loss

fd : N
n
c → R

fd(ci) = (i−1)E[ fd ]i−1+Ploss
cdi

(ci) δPSNRd
i

(6)

where E[ fd ]i−1 is the average relative PSNR loss for the previous
packets of the d-th description until the (i−1)-th instant, i.e.,

E[ fd]i−1 =
1

i−1
∑
t<i

fd(ct) (7)

for i> 1. A similar relation can be found for the coalitionD (assum-
ing that the coalition behaves as a single player), where the chosen
function is

fD(ci) = (i−1)E[ fD]i−1+δPSNRD
i Ploss

cd1i
(ci) ·P

loss
cd2i

(ci)

+δPSNRd1
i Ploss

cd1i
(ci) ·

(

1−Ploss
cd2i

(ci)
)

+δPSNRd2
i Ploss

cd2i
(ci) ·

(

1−Ploss
cd1i

(ci)
)

≃ (i−1)E[ fD]i−1+δPSNRD
i Ploss

cd1i
(ci) ·P

loss
cd2i

(ci).

(8)

In this case, the simplification is driven by the fact that the com-
ponent related to a joint loss proves to be more significant than the
others.

4.2 Classifying MD packets via cooperative games

The previous subsection has presented the basic functions required
by the optimization process. In this subsection, we show how it is
possible to classify effectively the different packets modelling the
whole transmission as a cooperative game.

Given the classification ci, the loss probabilities P
loss
cdi

, and the

percentages ρd
i for the i-th packet of each description, the adopted

classification strategy c∗i identifies a Nash equilibrium for the game
expressed by eq. (6) whenever the condition in eq. (2) is satisfied.

Assuming that coalition D is made of descriptions d1, d2 and
substituting eq. (6) and (8) into equation (2), an equilibrium is found
if

Ploss
cd∗i

(c∗i )< Ploss
k

([

c
−d,∗
i ,k

])

∀d ∈ {1, . . . ,n}\{d1,d2} and ∀k ∈ Nc

(9)

and

Ploss
cd1∗i

(c∗i ) ·P
loss
cd2∗i

(c∗i )< Ploss
k1

([

c
−D,∗
i ,k1,k2

])

·Ploss
k2

([

c
−D,∗
i ,k1,k2

])

∀(k1,k2) ∈ ND

(10)
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Figure 2: Network settings. a) Setting 1: congestion on a shared link (set1); b) Setting 2: congestion on a non-shared link (set2); c)
Random network using GT-ITM (set3).

where c
−D,∗
i is the array c∗i excluding the configurations for descrip-

tions d1 and d2 of coalition D. Equation (10) identifies a set of pos-
sible Nash equilibria, and therefore, the classification strategy has
to choose one of them. A possible criterion is to select the configu-
ration that minimizes the average distortion

δPSNR=
1

n

{

∑
d∈Nc\{d1,d2}

E[ fd ]i+E[ fD]i

}

. (11)

In this way, the algorithm avoids that one description jeopardizes
all the available bandwidth in case of congestion on a shared link,
and at the same time, it creates a certain differentiation between
the packets belonging to the same description improving the perfor-
mance in case of congestions affecting a single description.

In our simulations, MDC packets are transmitted over a
DiffServ-enabled network [7], and three different priority classes
Nc = {green,yellow, red} are available (see [7, 8]). For the sake of
conciseness, we will refer to them with the indexes 0,1,2 respec-
tively.

In order to compute the Nash equilibria for a game with a coali-
tion of two nodes it is necessary to define a new set of possible
strategies for the coalition. In our approach, we considered two dif-
ferent sets ND1 and ND2 of strategies (represented by couples of

labels (cMDd
i ,cMDd′

i ))

ND1 = {(0,0),(1,1),(2,2)}
ND2 = {(0,0),(1,1),(2,2),(0,1),(1,2)} .

(12)

Note that in the first set we assume that the two peers are synchro-
nized and choose the same strategy for all the packets, while in the
second set some of the strategies give a higher priority to the packet
of the first peer.

Simulations results will show how the proposed classification
approach proves to be extremely effective with different congestion
settings.

5. SIMULATION RESULTS

Experimental tests were performed implementing a DiffServ-
enabled network [7] using the NS2 simulator [12]. In the evalu-
ation of the algorithms, we simulated the downloading of differ-
ent CIF format sequences coded with fixed QP and GOP structure
IPPP of 15 frames. Descriptions are ordered according to a raster
scan of the pixel grids in Fig. 1. The values of the parameters λk,
k= 0, . . . ,Nc−1, were estimated from a training set of packet trans-

missions, while Pchan
k are independently evaluated by each node via

the RTCP protocol. These tests aim at comparing the proposed ap-
proach with that of the GT algorithm in [3], which provides a better
performance than the state-of-the-art srTCM approach in [8].

In a first set of simulations (labelled set1), we adopted the
network topology shown in Fig. 2(a). The node d1 is downloading
the MDC coded video sequence from the source nodes s1, s2, s3,
and s4, while the node s5 is streaming a Constant Bit Rate (CBR)

Table 1: Labeling for coalitions between nodes.

Label GT-COA1 GT-COA2 GT-COA3

Orient. Horiz. Vert. Diag.

Nodes s1,s2 s1,s3 s1,s4

Label GT-COA4 GT-COA5 GT-COA6

Orient. Horiz. Vert. Diag.

Nodes s3,s4 s2,s4 s2,s3

traffic towards the node e5 (with the only purpose of adding extra
packets in the network). Note that description d is uploaded by the
node sd. The access to the core network is ruled by the DiffServ-
enabled node e1, and the congestion is varied reducing the available
bandwidth Ra (the contention takes place on the same link).

In a second set of simulations (labelled set2), the network
topology has been slightly modified, as Fig. 2(b) shows. In this
case, the different MD source nodes are linked to separate DiffServ-
enabled nodes (labelled as e1, e2, e3, and e4). The congestion is
simulated reducing the available bandwidth Rb of the link from node
e1 to core network, while descriptions d, d = 2,3,4, are transmitted
to core network with no congestions. Nodes sk, with k = 5, . . . ,8,
have the only purpose of adding extra CBR packets in the network.

In the end, we considered a third test-bed (labelled set3)
where a random network of 100 nodes (see Fig. 2(c)) is generated
with the software GT-ITM [13], and source nodes sk, k = 1, . . . ,5
and destination node d1 are randomly attached to 6 nodes of the
random network. Congestions are created increasing the CBR traf-
fic streamed from source s5 to d1.

In our tests, we first evaluated the transmission performance
for different coalitions. More precisely, in a game of 4 descrip-
tions/players we considered coalitions of two nodes against the
other ones, which are referenced as reported in Table 1. Figure 3
shows the PSNR vs. Ra curves obtained on the network set1 for
sequences coastguard and foreman coded with QP= 28. It is
possible to notice that coalitions make possible to improve the aver-
age PSNR value of the GT approach made exception for the vertical
coalitions. In fact, most of the sequences present a strong vertical
correlation that allows the decoder to reconstruct the sequence with
good approximation using odd or even pixel rows only since the
other ones can be easily estimated. Classification results show that
the coalition leads the joint nodes to choose the labels with the low-
est priorities in order to ease the handling of congestion by the net-
work, and this allows a reliable delivery of the other descriptions.
Vertical coalitions lead to the loss of vertical couples of descrip-
tions that need to be estimated exploiting the horizontal correlation.
As a result, the PSNR of the reconstructed sequence is lower. The
graphs also show that the most effective coalitions are the diagonal
ones: whenever a diagonal couple is lost and the other is available,
the missing pixels can be recovered very effectively from quincunx
samples which permit obtaining a better quality with respect to rows
or columns of pixels. Fig. 3(a) and 3(b) show that algorithms GT-
COA3 and GT-COA6 permit increasing the average PSNR value of
1.3 dB for coastguard and 2.2 dB for foreman with respect to
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Figure 3: PSNR vs. Ra for sequences coastguard and foreman
(coded with QP= 28) from GT optimization using noncooperative
and cooperative games. Results were obtained using different sets
of strategies (ND1 and ND2). a) coastguard, b) foreman with
coalition strategiesND1 c) coastguard, d) foremanwith coali-
tion strategies ND2.

the GT approach.
Fig. 3(c) and 3(d) show the PSNR vs. Ra curves for the GT

classification strategies using the setND2 in place of ND1. It is pos-
sible to notice that strategies GT-COA3 and GT-COA6 still prove to
be the best among all the other coalitions and the overall perfor-
mances of the GT-based classifications are significantly improved
for strong congestions with respect to using ND1 made exception
for vertical coalitions. The PSNR difference can be at max 0.1 dB
higher for diagonal coalitions, 3.11 dB higher for horizontal ones,
but it can be down to 3.6 dB worse for vertical couples. The reason
for this inefficiency has to be related to the poorer performance of
horizontal correlation. Figure 4 reports the results obtained on net-
work settings set2 and set3. As for setting set2, it is possible
to notice that the cooperative strategy improves the quality of the
reconstructed sequence, but the gain in terms of PSNR is not rele-
vant (about 0.25 dB on average). On the contrary, results obtained
on the network setting set3 shows that cooperative games with di-
agonal coalitions permits improving the average PSNR value up to
3 dB with respect to a noncooperative game with high interfering
rates RI . As a matter of fact, it is possible to conclude that solutions
GT-COA3 and GT-COA6 prove to be the best for all the conditions.

6. CONCLUSION

The paper presents some classification approaches for a Multiple
Description Coded video sequence which are based on cooperative
games. Cooperation proves to be a winning solution since the PSNR
performance improves significantly with respect to previous works
based on non-cooperative games and state-of-the-art solutions. Fu-
ture work will be focused on testing these algorithms with different
network set-ups and different MDC solutions.
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