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ABSTRACT

Most of the past and current video coders partition the input frames
into regular blocks of pixels that are approximated by a motion es-
timation unit and coded via a block-based transform. A better per-
formance can be obtained by adapting the size of the approximated
region to the geometry and the characteristics of the objects cap-
tured by the camera.

The paper presents a novel coding scheme for video+depth sig-
nals that combines a 3D object identification unit with an object-
oriented motion estimation strategy. Object identification is ob-
tained via a joint luminance-depth oversegmentation of the acquired
scene which partitions the input scene into superpixels. The proce-
dure can be easily replicated at the decoder, and therefore, does not
imply the coding and transmission of object masks. The scheme
outperforms the rate-distortion performance of H.264/AVC of 2 dB
with a reasonable increment of the complexity for motion estima-
tion and segmentation.

1. INTRODUCTION

During the last years, the widespreading of 3D video displays and
applications has finally opened the way to the long-waited 3D video
revolution. Movies, television broadcasting, gaming and video
communication applications are adopting more and more frequently
3D video technology in order to increase the level of immersiveness
and involvement of users. As a consequence of this diffusion, ef-
fective 3D video compression schemes are required in order to face
two of the most troublesome issues about 3D video delivery. One
is the need to transmit a significantly-bigger amount of data with
respect to traditional video communication. The other is the need
to process different signals with heterogeneous characteristics, e.g.,
3D video includes standard video signals and geometry data. A
widely-adopted format for 3D video sequences is the Depth Based
Image Rendering or DIBR [1], which associates a depth map to
each frame of a standard video sequence.!.

Despite the fact that depth signals present peculiar characteris-
tics that prove to be completely different from standard video and
could be better exploited by ad-hoc coding solutions [2, 3], depth
and color (or texture) sequences show a strong correlation in the
motion flow that can be exploited in joint source coding [4, 5] or bit
allocation [6].

Moreover, a joint processing of video and depth signals permits
identifying more accurately the objects that are present in the scene.
This capability provides a significant leap forward in achieving high
compression gains since a small amount of data can characterize a
wide region in the captured scene (corresponding to a single object)
whenever the motion or spatial correlation present the same charac-
teristics all over it. In the latest video coding standards, the possibil-
ity of characterizing the movement for wide areas is implemented
by enabling motion estimation (ME) and compensation on variable-
sized blocks that can partially match the elements in the scene since
adaptation permits mitigating the compression inefficiency derived
from the unnatural partition of the image to be coded into square
or rectangular blocks. An example for this can be found in the cod-
ing standard H.264/AVC [7] which supports several block partitions
from 4 x 4 to 16 x 16 pixels. More recently, the current standard

IThe DIBR format can be referenced as video+depth format as well.
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HEVC [8] allows prediction blocks sized up to 64 x 64 pixels. The
choice of the most proper block size is performed according to its
rate-distortion performance on the pixel region to be coded.

A more flexible partitioning can be obtained via segmentation,
which improves significantly the compression gain. In fact, group-
ing set of arbitrarily-shaped pixel regions enables their approxima-
tion via spatial or temporal prediction characterized by a common
parameter set (e.g., the same prediction orientation or motion vec-
tors). In addition, recent results on the compression of geometry
data (such as depth maps, meshes) has shown that coding schemes
based on segmentation prove to be more effective than traditional
image coding strategies [2]. One reason for such improvement has
to be found in the peculiar nature of geometry signals (e.g., depth
maps) which present an alternation of smooth areas and sharp edges.
As a matter of fact, using segments that fit the edges permits im-
proving the compression efficiency. Initial works on segmentation-
based video coding were started more than 15 years ago (see [9] and
[10]). The possibility of characterizing individual objects in a coded
scene was later standardized within the following video coding stan-
dard like MPEG-4 [11], but it was never widely adopted and, so far,
few coding systems take full advantage of object-oriented coding
architectures [12]. This fact is due partly to the computational cost
of segmentation, partly to the need of signaling object shapes to the
decoder (which implies the coding and transmission of binary or al-
pha masks), and partly to the need of precision in the segmentation
process (which conditions an accurate object identification).

However, the recent widespreading of 3D video and the possi-
bility of obtaining depth maps in real time, e.g., via Time-of-Flight
(ToF) sensors or structured light cameras (see [13]), has provided
video coding designer with novel signals that can be processed to
obtain an accurate partitioning of the acquired scene at a reason-
able computational cost. In fact, joint segmentation of texture and
geometry signals permits identifying the borders of the objects ac-
curately so that edge distortion is limited and regions do not overlap
over two different objects. This latter inconvenient is utterly mini-
mized by forcing the segmentation routine to generate a significant
number of small segments (oversegmentation), called superpixels
[14].

This paper presents a video coding system that replaces the tra-
ditional block-based motion compensation with a superpixel-based
motion compensation, where superpixels are obtained via a joint
segmentation strategy processing both texture and depth signals.
In this part, different algorithms (such as k-means [15] or the one
by Felzenszwalb and Huttenlocher [16]) were tested and adapted
to handle DIBR data. Superpixels® are, at first, generated on the
previously-coded frames and, then, propagated to the following
frame exploiting the correlation existing among adjacent pictures.
For each segment in the current DIBR image (including both tex-
ture and depth components), a motion estimation unit computes
a predictor segment in the previous frame that minimize a cost
function, and characterizes it via a motion vector (MV). The pro-
posed approach permits reducing the overall bit rate significantly
since the segmentation can be reconstructed faithfully at the de-
coder from a minimal set of transmitted data, and it is possible to

LTS

%In the paper, the terms “superpixels”, “segments”, and “partitions” are
used equivalently to denote the image areas identified by the segmentation
strategy.

1899



M
L b Sy PpP Bit
ns Yn Map seg.s > Oversegmen Backward ME n’~n Stream
Forward ME 9 '

with seg.s L
Residual [
Sm T g MV |n,|, Dm MV, and Entropy
Coding
Segmen.

~ | mm o
In-1: Dpy

Frame
Buffer

Figure 1: Encoder block diagram.

employ arbitrarily-shaped blocks in motion compensation (reduc-
ing the amount of coded MV and approximating the real motion of
objects more accurately). Experimental results show that the pro-
posed strategy obtains a significantly-better rate-distortion perfor-
mance with respect to the standard H.264/AVC strategy.

In the following, Section 2 presents the structure of the coder,
with Subsection 2.1 reporting the adopted segmentation strategy,
Subsection 2.2 showing how segments are used to predict the cur-
rent frame, and Subsection 2.3 describing the entropy coding strat-
egy. Experimental results are reported in Section 3, and final con-
clusions are drawn in Section 4.

2. STRUCTURE OF THE CODING/DECODING
ARCHITECTURE

The proposed video coder mainly differs from previous hybrid
video coding standards in the motion estimation and compensation
routine, where a segmentation-based temporal prediction of the cur-
rent frame is performed. In the implemented scheme, two coding
types are supported for each coded frame: Intra coding and Inter
coding. Intra coding correspond to the Intra coding strategy defined
within the standard H.264/AVC. As for Inter frames, the coding pro-
cess can be split into three steps or phases. During the first phase,
the codec computes a segmentation mask for the current frame such
that objects in the scene can be identified by disjoint sets of small
segments (superpixels). In a second step, the ME unit approximates
each superpixel with an identically-shaped predicting region found
in the previously-decoded frame. Finally, the prediction residual
signal is processed by a traditional transform coding scheme. Both
MVs and transform coefficients are then coded into a binary stream
and transmitted to the decoder.

The whole coding scheme for Inter frames is depicted in Fig-
ure 1, while in Fig. 2 the block diagram of the corresponding de-
coder is shown.

At the beginning of each group of pictures (GOP), the first
video and depth frames are coded using the Intra strategy defined
in H.264/AVC. The reconstructed pictures are then buffered in the
frame buffer of Fig. 1, and the Inter coding process is adopted for
the following frames until the end of the GOP.

In the following, the different steps of the Inter coding strategy
will be described in detail.

2.1 Segmentation strategy

The first step of the Inter coding process consists in partitioning the
input frames into superpixels that can be used by the ME unit to
effectively compute a prediction for the current frame. The size of
superpixels proves to have a crucial role in the rate-distortion per-
formance of the coder since the effectiveness of ME depends on the
accuracy in matching the segments to the object in the scene. Using
small superpixels reduces the probability that they overlap over two
different objects and increases the performance of temporal predic-
tion. On the other hand, having many small superpixels in the scene
increases the bit rate required to code the MV field since a motion
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Figure 2: Decoder block diagram.

vector needs to be signalled for each segment. As a matter of fact,
the coder needs to find an appropriate trade-off matching the char-
acteristics of the coded sequence.

Moreover, the segmentation needs to be signalled to the decoder
without implying an undesirable increase in the coded bit rates. The
additional bit rate that is required for the coding of binary or alpha
object masks [11] can not be overlooked in the overall bit budget
for the whole sequence, and therefore, a processing strategy that
permits deriving the segmentation from the available data with lim-
ited additional information has to be preferred. As a consequence,
this choice implies an increase in the complexity of the decoder
since the derivation of the image segmentation has to be performed
in reconstructing the sequence as well.

The approach adopted in the proposed coder can be divided into
three steps. An initial segmentation is performed on the previously-
reconstructed texture and depth frames obtaining the segmentation
layout S,—; (see Fig. 1, 2, and 5). Then, the segmentation S,,_|
is propagated to the following frame, and finally, some of the su-
perpixels are utterly split into smaller superpixels in case a finer
partitioning is required. In the following these three phases are ex-
plained in detail.

2.1.1 Joint video+depth segmentation of the previously-decoded
frames

Let I, and D, be the input texture and depth frames at the time
instant n, and let f,_; and D,_, the reconstructed frames at time
instant n — 1 that are stored in the frame buffer. The previously-
coded frames f,_ and D,_; are used as “side information” and
partitioned into superpixels R,,_1 s, k =0,...,Ng — 1, using a joint
video+depth segmentation algorithm. In the paper, the superpixels
R, _1 ) are represented by sets of coordinates (x,y) related to the
included pixels (R, x € Z?2). The number Ny of initial superpixels
depends on the image resolution and on the adopted segmentation
algorithm.

In our approach, we tested different segmentation algorithms
in order to find the best solution in terms of accuracy and required
complexity. At first, we partitioned the input frames into disjoint
superpixels following a k-means clustering algorithm [15] where
the classified array a(x,y) associated to the pixel position (x,y) is

a(x7y): [infl()ﬁy) anl(xﬂ))x))] (1)

where I,_1(x,y) and D,_1(x,y) are respectively the depth and the
luminance values at position (x,y).3

In a second step, we considered the solution presented in [16],
which is based on a graph-cut strategy and was appropriately mod-
ified in order to support DIBR signals. More precisely, the weights

3From this point on, we will use the symbols , as reference to both the
image and the luminance component of the texture signal at time instant n.
This simplification is here allowed since the current implementation of the
coder supports gray scale sequences.
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Figure 3: Estimation of MV.

of the edges in the graph, which are computed averaging the ab-
solute differences between the RGB components of adjacent pixels
after a low-pass filtering, are modified including in the average the
absolute difference between depth values as well (where no smooth-
ing is performed on the input depth signal).

In the following, we will describe how the algorithm propagates
the partitioning S, on the following frames I, and D,,.

2.1.2  Propagation of segmentation

The temporal correlation existing between adjacent frames suggests
that the same regions R, ; could be found in the frames /, and
D,, arranged at different positions because of motion. As a matter
of fact, a forward motion estimation routine associates each super-
pixel R,_q x in b1 (Dy—1) witha region R,, i in I, (Dy) via aregion
matching algorithm minimizing a cost function. The superpixel R, x
presents the same shape of R,,_1 x and, given R,,_1 ¢, it can be iden-
tified by a motion vector v = [v; vy}, i.e., Ry = V+R,_1 4. The
cost function is

CRicipRu)= Y, |hoi(ry) —Lix+vey+v)|+ ()

(%) ERn-1x
Z |Dn—1(x7)’)_Dn(x‘i‘v)m)’"‘vy)’7
(%) ERn-1x

which combines two Sum-of-Absolute-Differences (SAD) for both
the luminance and the depth components of the corresponding re-
gions. All the R, ; can be signalled by specifying v for each region

(in Fig. 1 and 2 the new segmentation is referenced as Sﬁ’] ). In the
paper (see Fig. 1 and 2) we would refer to these motion vector set
with MV (see the graphic example of Fig. 3). In the paper each
superpixel R,, ;, will also be called “superpixel” and will be the area
on which motion compensation is performed.

Experimental results show that this prediction does not permit
an effective motion compensation since some pixels of I, could not
be included in any of the regions R, ; (outliers). As a matter of fact,
it is possible to overcome this problem with two filling strategies.
In case a small segment of outlier pixels lies between two spatially-
adjacent regions R, ; and Ry x41, R, and R, ;4 are enlarged in
order to include them. A similar strategy is adopted whenever the
ouliers fall between image borders and region R, ;. Whenever the
outlying area is too wide, i.e., the number of pixels is larger than a
threhold, additional 4 x 4 square regions R, x, k > Ng, are added in
the segment map to encapsulate the outlying pixels. This procedure
is also adopted to refine the segmentation to obtain a better ME.
More details will be provided in the next subsection. The final map
will be made of arbitrarily-shaped superpixels derived from the im-
age segmentation and square superpixels added in order to include
all the pixels. Note that neither enlarging R, ; nor adding extra re-
gions requires signalling additional information in the bit stream
since the decoder is able to reproduce the final partitioning from the
sole set M V.

Figure 4: Partitioning of R, ; and estimation of MV,

2.1.3 Refinement of the segmentation

The use of R, ; prevents an effective motion compensation since
segmentation is performed on a reconstructed image after compres-
sion, and therefore, the identification of segments is affected by cod-
ing artifacts and distortion. As a consequence, the segmented area
may result too wide and could include different objects. It is pos-
sible to improve the motion compensation performance by dividing
the superpixels R, x into smaller segments. Whenever the measured
SAD proves to be higher than a threshold value, the pixels p = (x,y)

in the segment R, ; are divided into smaller blocks B’J,;f‘,, such that

B:‘n’kn is made of all the pixels p whose coordinates satisfy the rela-
tion
m= |x/Bs| and n = |y/Bs]. 3)

The value By is the maximum block size and, after experimental
tests, was set to 4. The SAD threshold is set equal to 1.6 times
the average SAD computed on the reconstruction error for Intra
frames. In case the SAD is small enough, R, ; is kept as is. Note
that since this utter partitioning is optional, the encoder needs to no-
tify it to the decoder. An additional bit for each R,  is coded in the
bit stream signalling whether the superpixel has been splitted into
By X B blocks or not.

Figure 4 shows a graphic example of this process where R, «
is overpartitioned, while R,; remains unchanged. In this way, a

EoRs . 4 . . .
new partitioning (referenced as S¥') is obtained where regions are
referenced as R/ ,.

Figure 5 shows an example of the different partial segmentation
layouts related to the different steps of the partitioning routine.

2.2 Motion Estimation

In the previous section we have explained how forward motion es-
timation is used to find a segmentation of the frames [, and D,, to
be coded from a partitioning found on the previous images I,
and D,_;. The result of such estimation is a set of motion vec-
tors MV that permit to generate a first approximation of I, (Dy)

from the pixels of f,_; (D,_1), as Fig. 3 shows. However, forward
motion estimation needs to be refined since some segments could
have been overpartitioned and other segments have been enlarged
via the dilation operator. As a consequence, it is necessary to refine
motion vectors via a backward motion estimation that finds for ev-
ery region R;:. ¢ in Sﬁ’] a predicting segment in the previous frame
that minimizes the cost function defined in eq. (2). Each displace-
ment can be identified by a new set of motion vectors that will be
referenced as MV}, in the paper. Note that while the set MV}, aims
at identifying the partitioning into superpixels for ,, the set MV},
aims at reducing the energy of the residual error by refining motion
compensation. The whole set of predicting segments constitutes the
prediction frames IX and DF that respectively approximates I, and
D,, in the residual coding unit.

2.3 Residual and Entropy Coding

After approximating the current image combining segmentation
with motion estimation, the residual signal after temporal prediction
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Figure 5: Current and reference images with the corresponding seg-
mentation layouts. a) reference image [, b) current image I, c)
Segmentation layout S,,_; d) Segmentation layout SnM/.

need to be coded. To this purpose, we adopted the coding strategy
defined within the H.264/AVC standard [7]. The residual coding
strategy is described for the luminance component in the follow-
ing; a similar strategy is adopted for the prediction residual of depth
components. Note that the proposed solution implements separate
contexts for syntax elements related to the depth component.

3. EXPERIMENTAL RESULTS

The coder was tested on a wide set of DIBR sequences with dif-
ferent resolutions. We considered sequences car, hands from
Mobile3DTV web site [17], and sequences Interviewand Orbi
from [18]. Note that the quality of the provided depth maps changes
significantly for the different sequences since different depth es-
timation algorithms were adopted. Each input sequence is parti-
tioned into GOPs of 15 frames, where the first frame is coded us-
ing the standard Intra mode of H.264/AVC [7], while the following
frames are coded using the Inter mode. The quantization param-
eters QP varies within the set {20,24,28,32,36,40}. The chosen
entropy coding mode is the CABAC arithmetic coder because of
its high compression efficiency and its versatility. CABAC is also
employed to code the motion vector sets MV}, and MV in the bi-
nary stream. The performance of the segmentation-based coder us-
ing the segmentation strategy in [16] (labelled Superpix.) is
compared with a simplified version of H.264/AVC (labelled here
as H.264-1ight) which implements predictive mode only and,
therefore, proves to be comparable with the proposed architecture
since only the transform coefficients and the motion vector set MV},
need to be coded. We also report the coding results obtained with
a complete H.264/AVC coder (labelled as H.264-full) for the
sake of completeness, which implements the main profile with rate-
distortion optimization enabled. Figure 6 shows the PSNR-vs-rate
curves for different sequences coded with the proposed approach
at different bit rates using for segmentation the algorithm in [16]
appropriately-modified as described in Section 2.1. It is possi-
ble to notice that for the sequence car, the segmentation-based
method improves the PSNR value of 3 dB at 2 Mbit/s with re-
spect to H.264-1ight, while the improvement increases to 4.5
dB at 7 Mbit/s. A closer look at the bit allocation in the stream
shows that 92 % of the bit rate is devoted to coding the residual,
while 7 % and 1 % of the bit rate are devoted to coding the sets
MV, and MV, respectively. For more static sequences, like orbi
and interview, the compression gain decreases slightly since the
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Figure 6: PSNR vs. bit rate of different coding strategies for differ-
ent sequences (depth component). a) car b) orbic) interview
d) hands.

difference between the curve of the segmentation-based approach
and that of H.264-11ight is about 2 dB for orbi and 1 dB for
interview. This is due to the fact that for static sequences mo-
tion compensation performs well using square blocks as well since
all the elements present a limited amount of motion and there is
no need to distinguish the different objects. It is possible to notice
that for extremely-complex sequences (see results for the sequence
hands in Fig. 6(d)) the performance of the superpixels-based ap-
proach does not differ significantly from that of H.264-1ight.
This result is partially due to the quality of the estimated depth map,
which does not allow an accurate identification of segments in each
frame. The plots reported in Figure 7 show the MSE vs. rate curves
for the depth component of each subsequences. It is possible to
notice that the proposed solution outperforms the H.264-1ight
coder.

In our tests, we verified the performance of the algorithm with
different segmentation strategies. Fig. 8 reports the experimental re-
sults obtained using the k-means approach described in Section 2.1
((labelled here Superpix. k-m.). Experimental results for se-
quences car and interview in Fig. 8 show that the improvement
brought by the superpixels-based strategy depends on the accuracy
of the segmentation algorithm. It is possible to notice that the re-
sults obtained using k-means are worse with respect to those ob-
tained via the modified approach by Felzenszwalb and Huttenlocher
[16]. The graphs also report the results obtained from a standard
H.264/AVC coder (labelled H.264—-full). In this case, all the
rate-distortion optimization options and coding modes are enabled.
Note that the superpixels-based approach performs better than the
H.264-Full coder despite its complexity is significantly lower
(coding time saving is about 65 % with respect to H. 264-Full).
Asforthe H. 264-11ight strategy, the coding time of the proposed
approach increases of 14 % because of the additional segmentation
strategy.

4. CONCLUSIONS

The paper presented a new segmentation-based video coding strat-
egy for DIBR signals. Each frame is partitioned into segments that
are to be found in the previous frame via a joint video+depth seg-
mentation of the reconstructed information. Motion vectors are
then refined through a re-partitioning and a second stage of back-
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ward motion estimation. Experimental results show a significant
improvement (up to 4.5 dB) with respect to the H.264/AVC stan-
dard depending on the amount of motion in the sequence and on the

size
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of the generated segments.
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