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ABSTRACT
In recent years the interest in developing efficient algorithms for
the multiple-input multiple-output (MIMO) broadcast channel has
arisen. Vector precoding (VP) techniques have shown very promis-
ing performance results, but the perturbation process inherent in
these type of non-linear systems hinders their efficient implemen-
tation. The key to achieving a high-throughput VP implementation
is to operate directly on the complex-valued constellations. Nev-
ertheless, the complex-plane Schnorr-Euchner enumerators present
in the literature follow a sequential scheme, which derives in an in-
creased system delay and high resource demand in fully-pipelined
architectures. This paper presents the first non-sequential com-
plex Schnorr-Euchner enumerator for the precoding scenario. The
proposed complex enumerator has been implemented and analyzed
along with other state-of-the-art enumeration algorithms. Provided
hardware occupation and latency results show that the proposed
enumeration algorithm is superior to other existing schemes in
terms of hardware resource usage and throughput.

1. INTRODUCTION

In the multiuser MIMO broadcast channel, the use of precoding
techniques is required in order to detect the signal at the user termi-
nals without any cooperation between them. In recent years, a spe-
cial focus has been drawn to non-linear precoding techniques due to
their superior performance results. Specifically, vector perturbation
(VP) [1] has proven to be a specially interesting precoding tech-
nique which by means of modulo arithmetics approaches the perfor-
mance of the capacity-achieving albeit impractically complex dirty
paper coding. From the point of view of hardware implementation,
the most challenging part of the VP scheme is the computation of
the perturbing signal, which entails a search for the closest-point
in an infinite lattice. To avoid the high complexity of an exhaustive
search, tree-search algorithms originally designed and optimized for
maximum-likelihood detection have been adapted for their use in
precoding scenarios.

The sphere encoder (SE) algorithm [2] restricts the search for
the perturbation vector to a set of points that lie within a hyper-
sphere of radius R centered around a reference signal. By avoiding
the search over the whole lattice, the complexity of the perturba-
tion process is greatly reduced. If the search is performed over the
lattice Q, at each level of the tree search |Q| child nodes originate
from each parent node of the tree. However, those child nodes that
do not fulfil the sphere constraint are pruned out of the tree along
with all their descendants. Every time a leaf node is reached, the
path leading to that node is stored as a candidate solution and the
search radius R is updated with the new Euclidean distance. The
search process is then resumed with the updated sphere constraint
until a leaf node is reached and there are no more branches that ful-
fil the sphere constraint. The order in which the child nodes are
visited during the tree traversal has a high impact on the number
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Tecnológicos- Iñaki Goenaga for funding through an Etortek research grant.

of iterations performed by the SE. By sorting the child nodes in
accordance with their distance to the reference signal, as stated by
the Schnorr-Euchner enumeration [3], the processing time of the SE
can be greatly reduced. The undesired features of sequentiality and
variable complexity of the SE stem from the sphere constraint that
is checked at various stages in the algorithm. Even if this restricted
search provides the algorithm with the ability to find the optimum
solution, it is required that the constraint is removed or relaxed if a
fixed-complexity approach is to be followed. The fixed-complexity
K-Best precoder [4] selects the K best tree branches at each level
of the tree search regardless of the sphere constraint. Therefore, at
each one of the N stages of the K-Best tree-search, an ordering pro-
cedure has to be performed on the K|Q| candidate branches based
on their accumulated Euclidean distances (AED) down to that par-
ticular level. The sorting stage required at each level represents
the bottleneck of the algorithm. A full sorting procedure which
computes all K|Q| AEDs and subsequently sorts them is a sim-
ple method to carry out the ordering at the N stages of the tree,
but its complexity becomes prohibitive when medium-to-high val-
ues of K are used. The candidate sorting process can be simplified
if ordered list merging [5] or the winner path extension [6] algo-
rithms are used. Both distributed sorting methods require the im-
plementation of a Schnorr-Euchner enumerator. The fixed sphere
decoder/encoder algorithm [7][8] also performs a fixed-complexity
tree search but avoids the highly complex sorting stages. The tree
search is defined by a tree configuration vector n = [n1, . . . ,nN ] in-
stead, which determines the number of child nodes (ni) to be ex-
panded from each parent node at every level. In the early stages of
the tree search the child node selection is performed by means of
a Schnorr-Euchner enumerator, whereas a simple slicer is required
in the remaining levels. Consequently, there is no doubt that the
enumeration process plays a vital role in vector precoding systems
regardless of the particular tree-search algorithm employed.

The intricacy of a complex-plane Schnorr-Euchner enumerator
[3] has led to the dominance of real-valued equivalent models as
the preferred hardware architecture when implementing tree-search
techniques. Nevertheless, the simplicity of the enumerator comes at
the cost of an expanded tree, whose depth is twice that of the orig-
inal. This derives in higher resource occupation and longer delays,
which also affect the final throughput of the system.

This paper presents a novel low-complexity complex-plane
enumerator for precoding. As opposed to other enumeration algo-
rithms found in the literature where the symbols are selected in a
sequential fashion, the proposed puzzle enumerator performs a par-
allel enumeration. This way, the selection of the first ρ symbols
according to the Schnorr-Euchner enumeration is performed simul-
taneously, which reduces the delay of the enumeration process to a
great extent, specially for high values of ρ . Additionally, the fully-
pipelined and high-throughput implementation of the proposed al-
gorithm and other state-of-the-art complex-plane enumerators has
been carried out. Comparative results on the device occupation,
multiplier utilization and delay of the different enumerators show
that the proposed enumerator approach is best suited for a high-
throughput implementation.
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2. SYSTEM MODEL

In a VP system with M transmit antennas and N single-antenna
users, the data vector to be transmitted s = [s1, . . . ,sN ]T is perturbed
by a complex signal a ∈ τZN + jτZN , where τ is the modulo con-
stant. The value of this parameter is dependant on the constellation
of data symbols, being τ = 8/

√
10 for 16-QAM modulation. After

the perturbation process, the precoding matrix P shapes the signal to
be transmitted and a scaling factor β−1 is applied prior to transmis-
sion to comply with the transmit power constraints. At the user ter-
minals, the received signal is scaled by β again to meet the modulo
operation requirements. This non-linear operation at the receivers is
essential if the effects of the perturbing signal a are to be reversed.
The block diagram of a VP system is shown in the following figure:
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Figure 1: Block diagram of a VP system.

The VP model that achieves the minimum mean square error is
supported by the following equations [9]:

(HHH +ξ IN)−1 = UHU (1)

a = argmin
â∈τZN+ jτZN

∥∥∥U(s+ â)
∥∥∥

2

2
, (2)

x = β−1HH(HHH +ξ IN)−1(s+a),

where the precoding matrix is P = HH(HHH +ξ IN)−1 and the reg-
ularization factor ξ equals the inverse of the signal-to-noise ratio
(SNR). To comply with the fixed-complexity requirement, the in-
finite integer lattice required to optimally compute (2) will be re-
duced to the region Q , {q : |R(q)| ≤ 2τ, |I(q)| ≤ 2τ} of |Q|= 25
elements with virtually no degradation on the performance of the
system.

The matrix triangularization procedure in Equation (1) allows
to distribute the computation of the distance metrics across multi-
ple stages. Following such statement, the Euclidean distances that
must be minimized in the cost function in (2) can be equivalently
represented in a tree search fashion as

Di = U2
ii‖ai + zi‖2 +

i−1

∑
j=1

U2
j j‖a j + z j‖2 = di +Di−1, (3)

and

zi = si +
i−1

∑
j=1

Ui j

Uii
(a j + s j), (4)

where Uii represents the entries of the U matrix and zi refers to
the intermediate point at level i. The AEDs up to level i can be
then computed by adding the partial Euclidean distance (PED) or
distance increment of that level to the previous AED, that is, Di =
di +Di−1.

3. COMPLEX ENUMERATION

The Schnorr-Euchner enumeration [3] dictates the order in which
a certain set of nodes is to be visited according to their distance
to zi. When the real equivalent model is used, the ordering of the
child nodes is a simple task as the nodes just need to be visited in
a zig-zag fashion. This process is represented in Figure 2(b) for the
lattice elements of the real and imaginary axis. However, such an
straightforward scheme cannot be followed in the complex plane.

To avoid the high complexity and resource demand of a full-
sorting enumeration, a novel approach based on trigonometric cal-
culations was presented in [10]. The proposed scheme was orig-
inally developed to determine the admissible interval of constel-
lation points taking into account the sphere constraint set by the
sphere decoder. To that end, the constellation symbols are arranged
in concentric circles whose intersection with the search disk cen-
tered at zi is identified as the admissible set. Once the boundaries
for the search space have been established, the symbols are visited
in a zig-zag fashion within each concentric circle.

The intricacies of performing the highly complex trigonomet-
rical calculations required by this approach motivated the work in
[11], were an implementation-friendly version of the ideas in [10]
was presented. In Figure 2(a), the procedure for complex enumera-
tion is illustrated for the lattice under consideration. Note that since
the lattice of precoding symbols also includes null components, the
parameters of the algorithm in [11] have been slightly modified to
adjust to the VP case. Therefore, for the lattice of |Q| = 25 ele-
ments, the symbols are arranged in P = 6 subsets were the 0 element
is the unique member of one of the subsets. As an starting point for
this low-complexity algorithm, the value of zi is mapped into the
first quadrant to reduce the amount of decision boundaries to be
checked. As a result to this, all the enumerated values will have to
be mapped back to their original quadrants once the enumeration
process is finished. Next, the initial symbols in each concentric cir-
cle are chosen according to a simple boundary checking procedure.
Once all the initial symbols have been identified, their PEDs are
computed and the one with the smallest distance increment is se-
lected as the starting point for the enumeration (a(1)

i ). The process
is continued by selecting the following symbol within the subset
of a(1)

i that minimizes the phase difference with respect to zi. This
local enumeration procedure within each one of the P subsets is per-
formed in a zig-zag fashion were the direction of the enumeration
is determined by an additional set of boundary conditions. Next,
the PED of the newly enumerated symbol is computed and com-
pared to the previously calculated P−1 distance increments and the
one with the smallest PED is selected as the next enumerated value
(a(2)

i ). The algorithm proceeds accordingly until no more symbols
need to be evaluated or all subsets are empty. Note that P incremen-
tal distance calculations need to be performed at the initial stage and
just one PED computation for each one of the following enumerated
points.

Another method for complex enumeration was proposed in
[12]. This novel approach does not require the arrangement of sym-
bols in concentric circles, but uses the simple zig-zag enumeration
in the real and imaginary components of the lattice symbols as a
mean to determine the order for the complex Schnorr-Euchner enu-
meration. Therefore, the first step of the algorithm is to order the
elements in the real and imaginary axis according to their proxim-
ity to zi as shown in Figure 2(b). The elements {a1

R, . . . ,a5
R} and

{a1
I, . . . ,a5

I} represent the enumerated values in the real and imag-
inary axis, respectively. Clearly, the first enumerated value in the
complex lattice a(1)

i will be composed of the first enumerated val-

ues in the real and imaginary axis, namely a(1)
i = a1

R + a1
I j. To

determine the rest of the values, a candidate list L needs to be
defined. After the initial enumeration point has been selected, the
two adjacent symbols according to the one-dimensional enumera-
tion are added to the list of candidates. Therefore, the symbols
corresponding to a2

R + a1
I j and a1

R + a2
I j are included in L and

their corresponding PEDs are computed. The one with the smallest
PED is selected as a(2)

i and its two adjacent symbols are added to
the candidate list. Note that only one new symbol will be included
in L if one of the adjacent symbols has previously been selected.
This derives in a variable length candidate list, whose number of
elements cannot be determined beforehand. Finally, in [13] an ap-
proach for search sequence determination in tree search algorithms
for point-to-point MIMO detection was presented. Despite its sim-

740



τ

τ

2τ

2τ

x

y

3y = x

3x = y

x = y

>

<

>

<

>
<

zi

(a)

τ

τ

2τ

2τ

zi

a
3

R
a

1

R
a

2

R

a
1

I

a
3

I

a
2

I

(b)

Figure 2: Arrangement of the complex lattice symbols according to
different enumeration techniques.

plicity, the algorithm failes to provide valid enumerated values for
reference points outside the constellation’s grid. Moreover, since
the proposed algorithm only determines the first 8 enumerated val-
ues and uses a predefined sequence for the following points in the
enumeration, a certain performance degradation is introduced.

Most of the enumeration techniques that have been published so
far in the literature follow a sequential scheme, that is, the closest
node to zi is obtained first, then the second closest point is com-
puted and so on. The dependency on the past enumerated values
in order to perform the selection of the actual enumerated point
comes as a logical way of proceeding, but incurs in a great latency
of the enumeration algorithm. High latencies in entities within the
critical path of the system derive in significant throughput reduc-
tion. Moreover, in high-throughput fully-pipelined architectures,
long delays incur in extended device occupation due to the high
amount of required pipeline registers. To overcome the issues of
sequential enumeration, a novel complex plane enumeration tech-
nique is presented in this paper.

4. NOVEL PUZZLE ENUMERATOR

In this section an original complex-enumerator is presented. The
proposed model allows for the independent and low-complexity
computation of the enumerated values. Since the information on the
previously selected ρ−1 symbols is not required in order to obtain
the ρ th enumerated value, the latency of the presented enumeration
unit is not increased as the enumeration process progresses. More-
over, the selection of the symbols is performed without the compu-
tation of their associated distances, which results in a considerable
resource saving.

An important factor in the proposed enumeration approach is
the subset of the infinite integer lattice to be employed. Even if a
subset of |Q| = 25 elements is enough to get close-to optimal bit
error rate (BER) results, an extended lattice will be used with the
puzzle enumerator. As opposed to the detection problem, where all
the lattice symbols are equally probable and belong to a modulation
constellation, in VP systems those lattice points that are closer to
the origin are more likely to be part of the solution vector. As a
consequence to this, the values of zi, which somehow represent the
previous symbols in the search tree, will lie within a circle around
the origin. In an scenario of equally probable symbols, such as the
detection problem, the values of zi are scattered around the whole
constellation. The radius Rz of the disk where the zi values are con-
centrated in VP systems grows proportionally with the SNR. One
of the key factors of the puzzle enumerator is to select the minimum
lattice dimension that will allow for simple enumeration in the real
and imaginary components in a zig-zag fashion. If the lattice is too
small and there are zi values in the vicinity of the lattice border, the
enumeration in the real or imaginary components will not result in
a zig-zag pattern. This will derive in undesired border effects which
would require extra hardware resources and boundary checks. The
minimum amount of points of the extended lattice Qext depends on

both Rz and the number of values ρ to be enumerated:

|Qext|=





(2(dRzcτ + τ)+1)2 for ρ ∈ [2,7]
(2(dRzcτ +2τ)+1)2 for ρ ∈ [8,19]
(2(dRzcτ +3τ)+1)2 for ρ ∈ [20,37]

...
...

where d·cτ represents the operation of rounding to the closest lattice
symbol.

Once the lattice parameters have been set, the low-complexity
enumerator proceeds by performing a simple zig-zag enumeration
in the real and imaginary axis as shown in Figure 2(b). Only a few
values need to be enumerated in the real and imaginary axis depend-
ing on ρ . This way, 2 values need to be enumerated for ρ ∈ [2,3], 3
for ρ ∈ [4,7], 4 for ρ ∈ [8,11], and so on. This simple enumeration
procedure is necessary as the results of the proposed enumeration
unit are given as a combination of the real and imaginary enumer-
ated values, namely a(ρ)

i = ap
R +aq

I j.

For a certain a(ρ)
i only a few points are eligible. The ini-

tial value, namely a(1)
i , is certainly easy to acquire as a1

R + a1
I j

is the only suitable symbol. However, in order to the determine
the rest of the values a set of boundary checks needs to be per-
formed. In Figure 3 the decision boundaries for the first eight
enumerated values are depicted. As is shown in the figure, each
bounded region corresponds to a candidate lattice point. We will
define ∆R = |zR − a1

R| and ∆I = |zI − a1
I|, with zi = zR + zI j,

0 6 ∆R < τ/2 and 0 6 ∆I < τ/2. Note that the computation of
∆R and ∆I incurs in insignificant extra hardware usage as they can
be easily obtained by means of simple signal slicing during the real
and imaginary axis enumeration procedures, respectively. The set of
boundary conditions are then built in the form of A ∆R±B ∆I =Cτ
which only requires of an adder and simple constant multiplication
module, which in the case of A = 2 or B = 2 is equivalent to a mere
bit shifting. Furthermore, some boundary lines are common for sev-
eral ρ values which reduces the amount of boundary expressions to
be computed. As can be seen if Figure 3, the enumeration areas are
symmetrical with respect to the diagonal. Nevertheless, exploiting
the symmetry of the puzzles to reduce the enumeration process to
the lower-most triangle is a counterproductive measure as the gain
in resource usage does not compensate for the hardware required
to map the signal into the desired region. The border lines for the
enumeration puzzles in Figure 3 are the following:

Bα : ∆R = ∆I

Bγ : 2 ∆I+∆R = τ/2
Bδ : 2 ∆R+∆I = τ/2
Bε : 2 ∆I−∆R = τ/2
Bη : 2 ∆R−∆I = τ/2
Bκ : 3 ∆I−∆R = τ
Bλ : 3 ∆R−∆I = τ

The so-called boundary bits identify each one of the two regions
separated by their corresponding boundary line. For example, the
boundary bit bα associated to the boundary line Bα will be set to ’1’
when ∆R > ∆I and ’0’ otherwise. In order to resolve which puzzle
region corresponds to a certain value of zi, it is sufficient to make
logic combinations of the required boundary bits and to select the
candidate lattice point accordingly by means of a multiplexer. Ex-
amples of the circuitry for the second, fourth and eighth enumerated
values can be seen in Figure 4. As one can notice, the selection of all
the depicted enumerated values can be performed simultaneously,
as there is no data dependance among them. As opposed to other
enumeration approaches in the literature, the proposed puzzle enu-
merator does not base the selection of a certain enumerated value
upon Euclidean distance calculations and subsequent comparisons.
Due to this fact, it is possible to perform an optimum enumeration
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Figure 3: Fundaments of the proposed puzzle enumerator for (a) ρ = 2, (b) ρ = 3,(c) ρ = 4,(d) ρ = 5,(e) ρ = 6,(f) ρ = 7 and (g) ρ = 8.
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Figure 4: Hardware implementation model of the proposed complex
enumerator for the second, fourth and eighth enumerated values.

and, at the same time, compute suboptimum distance increments
based on the l1 or l∞ norms in order to reduce the amount of hard-
ware resources required by the precoder’s architecture. Performing
such a hardware reduction procedure with the rest of the algorithms
incurs in faulty enumeration.

4.1 Unordered puzzle enumerator
For the case of an FSE precoder any of the aforementioned enumer-
ators can be utilized to select the ni closest symbols. However, since
no ordering procedure is performed on the selected nodes, it is suf-
ficient to merely identify the set of the ni closest symbols regardless
of their order. This way, a further simplification on the proposed
puzzle enumerator can be performed. By combining the regions of
the puzzles from ρ = 2 up to ρ = ni, it is possible to identify the
symbols that will be present in the first ni enumerated values. For
example, for the case of ni = 8, the set of preferred children will
be composed of (a1

R +a1
I j), (a1

R +a2
I j), (a2

R +a1
I j), (a2

R +a2
I j),

(a1
R +a3

I j), (a3
R +a1

I j) and two further candidates that can be de-
termined by solving the puzzle shown in Figure 5.

5. IMPLEMENTATION AND COMPARATIVE ANALYSIS
OF COMPLEX ENUMERATION TECHNIQUES

This section analyzes the implementation aspects of various com-
plex enumerators. Specifically, fully-pipelined architectures of the
full sort enumerator, the approaches in [11], [12] and the proposed
puzzle enumerator have been carried out. All of the aforementioned
units perform the enumeration of the first ρ = 8 symbols in the
complex-plane. As has been previously stated, all the enumera-
tors except for the puzzle enumerator, base the selection of a certain
enumerated symbol on the distance computations of the symbols in
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Figure 5: Unordered puzzle enumerator for ρ = 8.

a candidate set. Even if the purpose of an enumerator is solely to
identify a certain set of points in the vicinity of zi, some of the calcu-
lated PEDs can be later reused by the tree search algorithm. There-
fore, for the sake of a fair comparison between enumeration units,
ρ = 8 metric computation units (MCU) have been added to the out-
put of the puzzle enumerator. This way, the occupation and delay
results shown in this section reflect the implementation of enumera-
tion units that output both the selected symbols and their associated
distance increments.

The PEDs that are to be computed share several common com-
ponents. Depending on the architecture of the enumerator, different
approaches to reduce the number of costly operations can be im-
plemented. For the full sort and the precoding version of the al-
gorithm in [11], the resource sharing distance increment procedure
described in the latter will be used. This way, the PED computation
in Equation (3) will be rewritten as a function of the arc ν and the
real and imaginary components of the lattice symbols:

di(ν ,P f ,Pg) = U2
ii

(
|zi|2 +R2

ν +2(zRP f + zIPg)
)

, (5)

where Rν represents the radius of arc ν and Pg stands for the gth

symbol of the real and/or imaginary axis. Following this approach,
the amount of required multipliers can be reduced as |zi|2 needs to
be computed only once and the values for the different R2

ν can be
stored as constants. Moreover, the result for the multiplications of
the form zRP f and their imaginary counterparts can be performed
by means of inexpensive constant multiplication modules. A differ-
ent resource sharing approach has been followed for the MCUs of
the enumerator introduced in [12] and the puzzle enumerator. The
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Enumeration + MCUs Enumeration only
Full sort [11] [12] Puzzle Puzzleθ Puzzle Puzzleθ

Number of occupied slices 4362 2406 1931 510 262 186 133
Number of slice LUTs 12762 6770 5091 1219 893 498 332
Number of DSP48Es 10 10 20 16 16 0 0
Total gate equivalent count 627 K 414 K 293 K 19 K 12 K 6 K 4 K
Maximum clock (MHz) 233 182 250 250 285 333 335

Table 1: Device occupation and maximum achievable frequency for different complex enumerators in a fully-pipelined scheme.

PEDs in this model are computed as the sum of the distance incre-
ments of the components in the real and imaginary axis:

di(p,q) = U2
ii

((
zR +ap

R

)2 +
(
zI +aq

I

)2
)

.

In Table 2 the latency of the implemented complex enumerators is
shown. Specifically, the amount of clock cycles ϕ required in order
to select the ρ th enumerated value and to compute the correspond-
ing PED are depicted. On one hand, the sequential nature of the full
sort scheme and the algorithms in [11] and [12] can be noticed from
the data shown in Table 2. On the other hand, the puzzle enumerator
shows a shorter and constant delay, with the exception of the first
value which is obtained without any boundary checking. Note that
most of the latency is due to the distance increment computation as
the sole enumeration procedure can be carried out in just two clock
cycles.

The fully-pipelined architectures of the proposed enumerator
along with the state-of-the-art enumerators reviewed in this paper
have been implemented on a Virtex-5 XC5Vlx30-3 FPGA. The de-
vice occupation results and the achievable maximum frequency for
the different designs are depicted in Table 1, which shows a con-
siderably smaller device occupation for the proposed scheme. The
total gate equivalent (GE) count of the puzzle enumerator is 22 and
15 times smaller than that required by the approaches in [11] and
[12], respectively. Furthermore, the gate equivalent count of the
full sorting model is 33 times higher than the proposed enumerator.
For the case of the unordered enumeration (Puzzleθ ) presented in
Section 4.1, an additional resource saving can be achieved due to its
simplified structure. The approaches that follow the distance com-
putation simplification in (5) show the smallest amount of required
embedded multipliers (DSP48Es). Nevertheless, in case a l1 norm
MCU is used along with the puzzle enumerator the multiplier count
for the proposed model would be reduced to 8.

Additionally, the device occupation results for the puzzle enu-
merator core without the MCUs is provided for completion. Re-
source usage results show the low complexity of the proposed enu-
merator, which can be implemented with just 6K GE.

Enumeration + MCUs Enum. only
Full sort [11] [12] Puzzle Puzzle

ϕ(1) 14 12 9 9 1
ϕ(2) 19 17 10 10 2
ϕ(3) 24 22 13 10 2
ϕ(4) 29 27 17 10 2
ϕ(5) 34 32 22 10 2
ϕ(6) 39 37 27 10 2
ϕ(7) 44 42 32 10 2
ϕ(8) 49 47 37 10 2

Table 2: Number of clock cycles to obtain the enumerated values.

6. CONCLUSIONS

This paper has presented the design and implementation of a paral-
lel complex-plane enumerator and its application to vector precod-
ing. When compared to other complex enumerators in the litera-
ture, the proposed model has shown a considerably smaller and con-
stant delay as well as a much reduced area occupation. The puzzle

enumerator is specially useful for fully-pipelined fixed-complexity
high-throughput precoders where the amount of symbols to enumer-
ate is fixed. Nevertheless, the presented enumeration unit can also
be used in iterative or sequential systems such as the SE if limited
enumeration is employed.
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